Obesity Paradox in Sepsis

Keith R. Walley, MD
St. Paul’s Hospital
University of British Columbia
Vancouver, Canada
Disclosure / Conflict of Interest

• No Conflict of Interest with respect to this presentation.
Obesity Paradox

• Critically ill obese patients have better outcomes despite:
 – Diabetes
 – Respiratory dysfunction
 – Chronic inflammatory state

• Is this true in sepsis?
• Is the inflammatory response different?
• Relationship to cytokines, lipoprotein levels?
Critically ill obese patients: meta-analysis

<table>
<thead>
<tr>
<th>Study or sub-category</th>
<th>Obese (n/N)</th>
<th>Nonobese (n/N)</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marik P</td>
<td>1724/12011</td>
<td>6509/36165</td>
<td></td>
</tr>
<tr>
<td>El-Solih A</td>
<td>35/117</td>
<td>22/132</td>
<td></td>
</tr>
<tr>
<td>Garrouste-Orgemas M</td>
<td>57/227</td>
<td>475/1471</td>
<td></td>
</tr>
<tr>
<td>O'Brien JM</td>
<td>137/457</td>
<td>413/1031</td>
<td></td>
</tr>
<tr>
<td>Ray D E</td>
<td>57/550</td>
<td>237/1598</td>
<td></td>
</tr>
<tr>
<td>Aldawood</td>
<td>134/540</td>
<td>394/1295</td>
<td></td>
</tr>
<tr>
<td>Bochicchio G</td>
<td>13/62</td>
<td>166/1105</td>
<td></td>
</tr>
<tr>
<td>Nasraway S</td>
<td>22/366</td>
<td>87/1007</td>
<td></td>
</tr>
<tr>
<td>Peake SL</td>
<td>26/129</td>
<td>69/304</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI): 14459/44108

Total events: 2205 (obese), 8372 (Nonobese)

Test for heterogeneity: $\chi^2 = 18.35$, df = 8 (P = 0.02), I² = 56.4%

Test for overall effect: $Z = 3.33$ (P = 0.0009)
60-Day In-Hospital Mortality
(ICON ICU patients n=8829)

Sakr et al. Crit Care Med. 2015
Septic shock: VASST

- ↑ creatinine 191 vs 130 μmol/L
- ↑ female 45 vs 38%
- ↓ fluid/kg 130 vs 180 mL/kg
- ↓ pressor/kg NE 0.13 vs 0.26
- ↓ pneumonia 35 vs 50%
- ↓ fungal 8.2 vs 15.6%

BMI
- BMI ≥30 kg/m² (obese)
- BMI 25-29.9 kg/m² (overweight)
- BMI <25 kg/m²

Number at Risk

<table>
<thead>
<tr>
<th>BMI</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI ≥30 kg/m²</td>
<td>245 201 187 179 174</td>
</tr>
<tr>
<td>BMI 25-29.9 kg/m²</td>
<td>209 181 160 143 135</td>
</tr>
<tr>
<td>BMI <25 kg/m²</td>
<td>276 220 183 169 162</td>
</tr>
</tbody>
</table>
LPS is sequestered in adipose tissue via VLDLR

Decreased VLDLR expression using Vldlr knockout

A

Visceral adipose tissue

![Graph showing LPS uptake in WT vs Vldlr -/-](image)

B

Subcutaneous adipose tissue

![Graph showing LPS uptake in WT vs Vldlr -/-](image)

Increased VLDLR expression using Pcsk9 knockout

C

Visceral adipose tissue

![Graph showing LPS uptake in WT vs Pcsk9 -/-](image)

D

Subcutaneous adipose tissue

![Graph showing LPS uptake in WT vs Pcsk9 -/-](image)
↑ VLDLR increases septic shock survival
(VLDLR rs7852409 C allele is gain-of-function)

Survival

Days

GG (n=305)
CG (n=171)
CC (n=43)
Cytokine inflammatory response
Subcutaneous adipose tissue may be “good” fat
Visceral adipose tissue may be “bad” fat

VAT/SAT
Visceral Adipose Tissue / Subcutaneous Adipose Tissue

High VAT/SAT (Bad?)

Low VAT/SAT (Good?)
High VAT/SAT is bad

P<0.005

<table>
<thead>
<tr>
<th>Number at Risk</th>
<th>Days after enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartile 1</td>
<td>64 61 57 56 54 53 52 51 50 50</td>
</tr>
<tr>
<td>Quartile 2</td>
<td>65 55 53 49 47 46 44 44 41 41</td>
</tr>
<tr>
<td>Quartile 3</td>
<td>64 57 49 43 41 38 37 36 35 36</td>
</tr>
<tr>
<td>Quartile 4</td>
<td>64 56 41 39 34 34 34 31 31 31</td>
</tr>
</tbody>
</table>

90-day mortality by VAT/SAT

P=0.004

P=0.023

Pro/anti-inflammatory ratio: IL8 / IL10

VAT/SAT related to LDL, HDL?

![Survival](image1.png)

Low VAT/SAT vs High VAT/SAT on survival days.

![LDL](image2.png)

Box plots showing LDL levels for Low VAT/SAT vs High VAT/SAT.

P = 0.043 (difference in survival days)

P = 0.006 (difference in LDL levels)
Low LDL, HDL levels in sepsis

Low LDL, HDL are bad

VAT/SAT related to LDL, HDL?

Low VAT/SAT vs. High VAT/SAT

Survival

Days

P = 0.043

LDL

Low VAT/SAT vs. High VAT/SAT

P = 0.006
Conclusions

• Obesity paradox is particularly strong in sepsis
 – High BMI protects against mortality
 – Better nutritional state?
 – Sequesters pathogen lipids?
• Low VAT/SAT is beneficial at any BMI
• Subcutaneous Adipose Tissue (SAT) is good
 – Not as pro-inflammatory as VAT
 – Protects against lipoprotein drop
Clinical Implications

• Another reason nutrition is important?
• Novel strategies to increase LPS sequestration in adipose tissue (PCSK9 inhibitors)?
• Do anti-inflammatory therapies work better in patients with high VAT/SAT?
• Important to understand why low LDL, HDL are low in sepsis and associated with adverse outcome (supplement HDL?)
John Boyd
Jim Russell
Harvey Coxson
Mihai Cirstea
Chawika Pisitsak
Bandarn Suetrong
Kelly Genga
Joseph Lee

VASST Investigators

Keith.Walley@hli.ubc.ca
Size of the problem

Severe Sepsis
All hospitalized
Half ICU