Assessing thrombocytopenia in the intensive care unit: The past, present, and future

Ryan Zarychanski MD MSc FRCPC
Sections of Critical Care and of Hematology, University of Manitoba
FINANCIAL DISCLOSURE RELEVANT TO THIS PRESENTATION:

Grants/Research Support: None

Speaker bureau/Honoraria: None

Consulting fees: None
Objectives

1. Characterize the multiple mechanisms that can contribute to thrombocytopenia in the ICU

2. Evaluate the trajectory of the patient’s platelet count and apply this information to establish a diagnosis and inform prognosis

3. Transfuse platelets appropriately to prevent and manage bleeding in thrombocytopenic patients admitted to the ICU
Epidemiology of thrombocytopenia in ICU

• **Prevalence** at ICU admission ranges from 8% to 68%

• **Incidence** of developing thrombocytopenia in the ICU ranges from 14% to 44%

• Variability reflect variation in patient population, ICU characteristics, and the definition of thrombocytopenia
Epidemiology of thrombocytopenia in ICU

• PROTECT Trial (n = 3,639)
 – Prevalence of thrombocytopenia 26.2% (952 patients)

 – Incidence of Thrombocytopenia
 • Mild (100–149 × 10⁹/L) 15.3% (417 patients)
 • Moderate (50–99 × 10⁹/L) 5.1% (140 patients)
 • Severe (< 50 × 10⁹/L) 1.6% (44 patients)

Risk factors for thrombocytopenia in ICU

- **Risk factors** commonly associated with ICU-acquired thrombocytopenia (multivariate analyses)
 - Severity of illness
 - Organ dysfunction
 - Sepsis
 - Vasopressor use
 - Renal failure.

Consequences of thrombocytopenia in ICU

• **Bleeding and Transfusion**
 – **PROTECT**
 • Any thrombocytopenia associated with major hemorrhage and transfusion of RBCs, PLTs, FFP, or cryoprecipitate
 – **Observational studies**
 • Thrombocytopenia (incident or prevalent) is associated with bleeding and transfusion
Consequences of thrombocytopenia in ICU

• Mortality
 – PROTECT
 • Severe thrombocytopenia associated with increased ICU and hospital mortality (1.6% of patients)
 – Observational studies
 • 6/8 observational studies thrombocytopenia was found to independently predict mortality
Thrombocytopenia as a marker of illness

- Thrombocytopenia also associated with:
 - Increased ICU and hospital LOS
 - Need for organ support

- Blunted recovery predicts death
- Deaths are not typically due to bleeding
Causes

• Common

• Uncommon

• Rare
Causes

• **Common**
 – Sepsis
 – Disseminated intravascular coagulation
 – Consumption (eg major trauma, cardiopulmonary bypass)
 – Dilution (with massive transfusion)
 – Myelosuppressive chemotherapy
 – Mechanical circulatory support
Causes

• **Uncommon**
 – Heparin-induced thrombocytopenia
 – Hemophagocytic syndrome
Causes

• Rare
 – Drug-induced thrombocytopenia (other than heparin or cytotoxic chemotherapy)
 – Leukemia, myelodysplasia, aplastic anemia, etc, unless abnormalities were already present before ICU admission
 – Thrombotic thrombocytopenic purpura
 – Immune/idiopathic thrombocytopenia
 – Post-transfusion purpura
Mechanisms

• Poorly understood

• May have multiple possible causes

• Tools to distinguish between them are limited
Mechanisms

- **Decreased Production**
 - Note** Inflammatory cytokines stimulate thrombopoiesis
 - Unlikely to be the dominant factor
 - Exceptions include preexisting marrow disease or cytotoxic chemotherapy.

- **Sequestration**
 - Only if preexisting (eg, liver disease with portal hypertension)
 - May contribute to the severity of thrombocytopenia and reduce post-transfusion platelet increments
Mechanisms

• Destruction and/or Consumption
 – Explains the bulk of thrombocytopenia in the ICU
 – Thrombin
 – Antibodies
 – Hemophagocytosis
 – Histones
 – ADAMTS13 depletion
 – Complement activation
Sepsis

- 10% of ICU admissions
- 50% of TCP in ICU

- Thrombocytopenia may modify the host immune response to Infection

- Consideration mechanisms suggests directions for therapeutic trials.
Thrombocytopenia in Sepsis

- Retrospective cohort study of septic shock (n = 980; APACHE II = 25)
- Prevalence of TCP at ICU admission: 17% (n = 165)
- Incident of TCP in ICU: 28% (n = 271)

- Median time to TCP (PLT < 100): 2 days (IQR 1 to 3)
- Median time from TCP to platelet recovery: 6 days (IQR 4 – 8)
- Average platelet nadir: 62 (SD 24.6) in survivors
Thrombocytopenia in Sepsis

In a propensity-matched cohort analysis

- TCP **not** associated with hospital mortality (OR 1.17; 95% CI 0.81-1.69)
- TCP is associated with:
 - ICU length of stay 9 vs. 6 days; p<0.01
 - Duration of mechanical ventilation 7 vs. 4 days; p<0.01
 - Duration of vasopressor use 4 vs. 3 days; p<0.01
 - Major bleeding events 41% vs 18%; p<0.01

Thrombocytopenia in Sepsis

• **Thrombin**
 - Sepsis is a well-recognized trigger of DIC
 - Driven by upregulation of tissue factor expression on monocytes
 - Several targeted anticoagulants (TFPI, AT, APC) have been evaluated in the treatment of sepsis...largely negative results

 - ACTIVE RESEARCH:
 • ‘Less targeted’ anticoagulants may be beneficial to reduce thrombin-mediated platelet activation and DIC
Heparin Anticoagulation to improve outcomes in septic shock

HALO

- Propensity Matched Cohort Study
- Meta-Analysis
- National Survey
- Pilot Randomized Feasibility Trial
- Exit survey
- Cytokine Analysis
- Activation of Coagulation
- Cell free DNA
- Phase II International RCT
- Phase III International RCT
Thrombocytopenia in Sepsis

- Hemophagocytosis (HPS)
 - Evolving knowledge base pertaining to the definition & diagnosis
 - Evidence to inform treatment is lacking
 - Current therapies target T cells (steroids, cyclosporine) and macrophages (etoposide)
 - IVIG may support defective humoral immunity and reduce systematic inflammation
 - RCTs suggest a survival benefit of IVIG
IntraVenous Immune Globulin In Severe Sepsis

InVIGIS

International Survey
• Utility, Utilization
• Barriers/facilitators
• Willingness to study

PS Matched Cohort
• Mortality
• Utilization
• Dosing

Modeled Economic Evaluation of IVIG in Sepsis

Population Cohort
• Long-term sepsis-mortality
• Health-care utilization

Integrated Economic Evaluation

Pilot RCT → 2B Adaptive RCT → Phase 3 International Multicentre RCT

Translational Biology
• **ADAMTS13 deficiency**
 – Possible contribution to thrombocytopenia and microvascular injury should lead to consideration of future trials evaluating plasma exchange or infusion of recombinant ADAMTS13
 – Meta-analysis of plasma exchange suggests benefit in adults
 – Considerable European interest in non-centrifugal plasma filtration
How I approach thrombocytopenia in the ICU

Past

Present

Future
Approaching thrombocytopenia in the ICU

• Past
 – What is the context of the patient’s ICU admission?
 – Is there evidence of a preexisting illness or the use of a drug known to cause thrombocytopenia?
 – Could the ICU admission have been precipitated by a catastrophic illness associated with thrombocytopenia, such as thrombotic thrombocytopenic purpura, hemophagocytic syndrome, or acute leukemia?
 – Was there major trauma or surgery that would consume platelets, or transfusion and fluid resuscitation that would cause dilution?
Approaching thrombocytopenia in the ICU

• Present
 • What is the trajectory of the platelet count, and how does it relate to the patient’s clinical course?
 • How low is the platelet count?
 • Is there thrombosis?
Trajectory #1: Present low...stay low

- Suggests an independent cause of thrombocytopenia
 - marrow failure
 - Hypersplenism
- Investigation could include assessment of spleen size, review of the peripheral blood film, and bone marrow examination
Trajectory #2: Falls immediate; recovers quickly

- Seen in major surgery (esp. CPB) or massive transfusion.
Trajectory #3: Falls in first few days; recovers with improvement of the clinical condition

- Seen in sepsis, pancreatitis, burns, multi-organ dysfunction
Trajectory #4: Fall and stay low in a patient whose clinical course is otherwise recovering

- Consider iatrogenic causes
 - HIT, other drugs, (post-transfusion purpura)
Trajectory #5: Falls in first few days; stays low in a patient with persistent multi-organ failure

- Observed in the sickest of patients who have the worst prognosis.
 - Sepsis, DIC, HPS, and shock are possible.
- It is not clear to what extent the thrombocytopenia contributes to poor outcomes.
Approaching thrombocytopenia in the ICU

• Present
 • What is the trajectory of the platelet count, and how does it relate to the patient’s clinical course?
 • How low is the platelet count?
 • Is there thrombosis?
Approaching thrombocytopenia in the ICU

• Present
 • What is the trajectory of the platelet count, and how does it relate to the patient’s clinical course?
 • How low is the platelet count?
 • Is there thrombosis?
Approaching thrombocytopenia in the ICU

• Future
 – Is the platelet count following the expected trajectory, given your analysis of the cause?
Management of thrombocytopenia in ICU

• Treat the underlying cause!

• Manage expectations
 – Sepsis: improvement not expected until 2 days after discontinuation of pressors
 – ECMO/VAD: likely to persist until device removal
Management of thrombocytopenia in ICU

• **Platelet transfusion**
 – Risk:Benefit of platelet transfusion is unknown
 – Effectiveness of platelet transfusion to stop bleeding, reduce transfusion, or improve clinical outcomes is uncertain
 – Harms associated with PLT transfusion are well documented
 – Nosocomial infection, thrombosis, acute lung injury

 – High quality trials are warranted
<table>
<thead>
<tr>
<th>Indication</th>
<th>Platelet threshold‡</th>
<th>Strength of recommendation</th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe bleeding</td>
<td>Maintain PLT > 50 x10⁹/L; consider using an MTP</td>
<td>Strong</td>
<td>Low</td>
</tr>
<tr>
<td>Prophylaxis in adults</td>
<td>10 x10⁹/L</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Prior to elective central venous catheter</td>
<td>20 x10⁹/L§</td>
<td>Weak</td>
<td>Low</td>
</tr>
<tr>
<td>Prior to chest tube insertion or thoracentesis</td>
<td>50 x10⁹/L</td>
<td>Weak</td>
<td>Low</td>
</tr>
<tr>
<td>Prior to bronchoscopy with lavage</td>
<td>20 x10⁹/L</td>
<td>Weak</td>
<td>Low</td>
</tr>
<tr>
<td>Prior to paracentesis</td>
<td>Not routinely required</td>
<td>Weak</td>
<td>Low</td>
</tr>
<tr>
<td>Prior to bone marrow biopsy</td>
<td>Not routinely required</td>
<td>Weak</td>
<td>Low</td>
</tr>
<tr>
<td>Prior to elective diagnostic lumbar puncture</td>
<td>50 x10⁹/L</td>
<td>Weak</td>
<td>Very low</td>
</tr>
<tr>
<td>Prior to urgent diagnostic lumbar puncture</td>
<td>20 x10⁹/L</td>
<td>Weak</td>
<td>Very low</td>
</tr>
<tr>
<td>Prior to major elective surgery (excluding neurosurgery)</td>
<td>50 x10⁹/L</td>
<td>Weak</td>
<td>Very low</td>
</tr>
<tr>
<td>Prior to neurosurgery</td>
<td>100 x10⁹/L</td>
<td>Weak</td>
<td>Very low</td>
</tr>
<tr>
<td>Traumatic brain injury, Intracranial hemorrhage</td>
<td>100 x10⁹/L</td>
<td>Weak</td>
<td>Low</td>
</tr>
<tr>
<td>Prior to insertion of an intraventricular drain (EVD)</td>
<td>100 x10⁹/L</td>
<td>Weak</td>
<td>Very Low</td>
</tr>
</tbody>
</table>
Conclusions

• Thrombocytopenia in the ICU is common and correlates with an adverse prognosis

• Multiple mechanisms may contribute to thrombocytopenia; Differentiating the pertinent cause (or causes) in individual patients is challenging

• Looking back at the patient’s medical history and presenting illness, while observing the platelet trajectory and the clinical course, offers clues to the diagnosis and prognosis.

• Optimal platelet transfusion strategies to prevent or treat bleeding in thrombocytopenic ICU patients remain to be defined
Objectives

1. Characterize the multiple mechanisms that can contribute to thrombocytopenia in the ICU
2. Evaluate the trajectory of the patient’s platelet count and apply this information to establish a diagnosis and inform prognosis
3. Transfuse platelets appropriately to prevent and manage bleeding in thrombocytopenic patients admitted to the ICU
For further details:

rzarychanski@cancercare.mb.ca