Heart Transplantation from Donation after Cardiocirculatory Death Donors: Future Research Directions

Darren H. Freed MD PhD FRCSC
Associate Professor
Surgery, Physiology and Biomedical Engineering
Disclosure

• I am a cardiac surgeon/scientist
• I have received supplies from
 – XVIVO Perfusion
 – Medtronic
 – LivaNova (Sorin)
 – Getinge Group (Maquet)
 – Astellas Pharma Canada
• I am the founder of Tevosol, Inc
Organ Donation Process

NDD
- Withdrawal Life Support
- Circulatory Arrest
- Organ Procurement
- Organ Storage
- Organ Transplant

DCD
- Hypoxic Arrest
- Stand-Off Period
- Organ Storage
- Organ Transplant
Donation after circulatory death (DCD)

Withdrawal Life Support
Circulatory Arrest
Utilization of Hearts from DCD donors

• Historical aspects
 • The first heart transplant was performed with a donor after cardiocirculatory death was declared

 – The lack of success of heart transplant early on has been attributed in part to the use of hearts from DCD donors

 – Given the shortage of donor hearts, there is renewed interest in recovering hearts from DCD donors for transplantation, particularly in the pediatric population
Utilization of Hearts from DCD donors

• Concerns
 • Can viability of the heart be maintained through the DCD process?
 • How can the clinician be assured that the heart will regain sufficient function to allow successful transplantation?
 • What is the best way to resuscitate/preserve the heart for transplantation?
 • What effect will the warm ischemic period have on the development of CAV?
Myocardial ischemia

• Cessation of blood flow/oxygen delivery
 • Rapid reduction in oxidative metabolism
 • Depletion of ATP occurs over 15-20"
 • Poor correlation between ATP level and irreversible injury
• Progressive reduction in myocardial contractility
• Loss of mitochondrial membrane potential
• Ionic perturbations
Ionic changes during ischemia

Ionic changes during ischemia

Ionic changes during reperfusion

Ionic changes during reperfusion

Impact of intracellular calcium overload

Gottlieb JCPT 2011
Reperfusion

• Allows restoration of oxidative metabolism
• Normalization of pH

• Large burst of ROS
• Onset of apoptotic and necrotic cell death

• IR injury occurs predominately during reperfusion
 • Tremendous opportunity for intervention
 • Therapies must be administered at the point of reperfusion or within seconds
Therapeutic goals

• Facilitate restoration of ATP
• Facilitate restoration of ion homeostasis
• Minimize the effect of $[\text{Ca}^{2+}]_i$
• Control ROS
• Protect mitochondria
• Protect endothelium
Putative therapeutic targets

Murphy et al, Physiol Rev 2008
Standard myocardial preservation

• Crystalloid mixtures
 • St. Thomas
 • Celsior
 • HTK
 • UW
 • Del Nido

• All are delivered at profoundly hypothermic conditions
• All are hyperkalemic
• Varying $[\text{Ca}^{2+}]$ and $[\text{Mg}^{2+}]$
Organ preservation

- Hyperkalemia
 - no added beneficial effect over inducing asystole
 - coronary vasoconstriction, compromise cardioplegia delivery and distribution
 - damage endothelial cells and myocytes
 - promote myocardial electrical instability and arrhythmias
 - intracellular Na\(^+\) and Ca\(^{2+}\) loading and oxidative stress leading to mitochondrial impairment, necrosis and apoptosis
Limiting IR injury

- Better preservation techniques
 - pre/post/remote conditioning

- preservation solutions/additives
 - non-depolarizing cardioplegia
 - NHE inhibitors
 - NCX inhibitors
 - MPTP inhibitors (CsA)
 - growth factors
 - adenosine axis
 - PKC-ε inhibitors
Methods

• 60 kg female pigs
• Brain death control group
 • intracranial balloon inflation
• Donation after circulatory death group
 • hypoxic circulatory arrest (CVP = MAP)
 • 15 minutes stand-off period
 • reperfusion *in vivo* on cardiopulmonary bypass
 (normothermic regional perfusion, NRP)
 • Cold static storage until transplant
• invasive hemodynamic assessment
• magnetic resonance cardiac imaging and spectroscopy

Myocardial Energetics

<table>
<thead>
<tr>
<th>Orthotopic heart transplantation</th>
<th>DCD (n = 5)</th>
<th>BD (n = 5)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load-independent measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV ESPVR</td>
<td>1.77 (0.96)</td>
<td>1.04 (0.13)</td>
<td>0.43</td>
</tr>
<tr>
<td>LV PRSW</td>
<td>80 (26)</td>
<td>54 (19)</td>
<td>0.21</td>
</tr>
<tr>
<td>RV ESPVR*</td>
<td>0.90 (0.28)</td>
<td>0.42 (0.18)</td>
<td>0.32</td>
</tr>
<tr>
<td>Load-dependent measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP (mm Hg)</td>
<td>48.0 (8.0)</td>
<td>54.2 (8.6)</td>
<td>0.33</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>115 (24)</td>
<td>101 (10)</td>
<td>0.31</td>
</tr>
<tr>
<td>Max LV systolic BP (mm Hg)</td>
<td>84 (16)</td>
<td>77 (15)</td>
<td>0.63</td>
</tr>
<tr>
<td>LV dP/Dt max (mm Hg/sec)</td>
<td>1585 (172)</td>
<td>1535 (421)</td>
<td>0.83</td>
</tr>
<tr>
<td>LV dP/Dt min (mm Hg/sec)</td>
<td>-1234 (231)</td>
<td>-1557 (477)</td>
<td>0.27</td>
</tr>
<tr>
<td>Diastolic function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV EDPVR</td>
<td>0.12 (0.04)</td>
<td>0.07 (0.02)</td>
<td>0.15</td>
</tr>
<tr>
<td>RV EDPVR*</td>
<td>0.04 (0.03)</td>
<td>0.05 (0.03)</td>
<td>0.25</td>
</tr>
<tr>
<td>MRI measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEDV (mL)</td>
<td>44 (13)</td>
<td>44 (13)</td>
<td>0.99</td>
</tr>
<tr>
<td>LVESV (mL)</td>
<td>18 (7)</td>
<td>23 (16)</td>
<td>0.73</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>58 (9)</td>
<td>53 (26)</td>
<td>0.70</td>
</tr>
<tr>
<td>RVEDV (mL)*</td>
<td>53 (19)</td>
<td>64 (12)</td>
<td>0.27</td>
</tr>
<tr>
<td>RVESV (mL)*</td>
<td>43 (9)</td>
<td>39 (15)</td>
<td>0.30</td>
</tr>
<tr>
<td>RVEF (%)*</td>
<td>10 (11)</td>
<td>25 (10)</td>
<td>0.04</td>
</tr>
<tr>
<td>CO (L/min)</td>
<td>3 (0.8)</td>
<td>2.4 (0.6)</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Summary

• The *in situ* resuscitated DCD heart
 • is viable with restoration of near normal energy state
 • demonstrates good contractile function

• Successful orthotopic transplantation of resuscitated DCD hearts with comparable hemodynamic performance to transplanted BD hearts
Towards controlled initial reperfusion

- Cardioplegic arrest in the donor
- \textit{ex vivo} perfusion/evaluation
- Transplantation
Methods

- 60 kg female pigs
- Donation after circulatory death
 - hypoxic circulatory arrest (CVP=MAP)*
 - 15 minutes stand-off period
- Initial reperfusion via the isolated aortic root
- Strategies:
 - 1: Initial reperfusion with standard hypothermic, hyperkalemic cardioplegia (Plegisol/blood); \textit{ex vivo} perfusion with STEEN Solution™/blood; cold ischemic period for mounting on the apparatus as well as transplant
 - 2: Initial reperfusion with tepid adenosine/lidocaine cardioplegia†; \textit{ex vivo} perfusion with STEEN Solution™/blood; continuous perfusion after mounting on the apparatus
- Orthotopic cardiac transplantation
- Invasive hemodynamic assessment
- Magnetic resonance cardiac imaging

*CMAJ, 2006; †JTCS 2010, 2007, 2004
Hypoxic Cardiac Arrest

Cold crystalloid/blood cardioplegia

Wean from CPB Post transplant functional assessment

Strategy 1

15 min

Mount on ex vivo perfusion apparatus

Ex vivo perfusion and assessment of function with STEEN Solution/blood

Transplant

Strategy 2

15 min

Mount on ex vivo perfusion apparatus

Ex vivo perfusion and assessment of function with STEEN Solution/blood

Transplant

Adenosine/Lidocaine cardioplegia
Myocardial edema and myocytolysis

Weight Gain (grams/hour)

<table>
<thead>
<tr>
<th>Strategy 1</th>
<th>Strategy 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$p = 0.008$

Tropinon I (ng/ml)

<table>
<thead>
<tr>
<th>Start ex vivo</th>
<th>End ex vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy 1</td>
<td>Strategy 2</td>
</tr>
</tbody>
</table>

$p = 0.047$

$p = 0.014$

White et al, JHLT 2013
Strategy 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Log2FoldChange</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-oxo-butryl-PPC</td>
<td>-0.24</td>
</tr>
<tr>
<td>POVPC</td>
<td>0.83</td>
</tr>
<tr>
<td>Succinoyl-PPC</td>
<td>1.15</td>
</tr>
<tr>
<td>PGPC</td>
<td>0.82</td>
</tr>
<tr>
<td>SOVPC</td>
<td>0.95</td>
</tr>
<tr>
<td>Furybutanoyl-PPC</td>
<td>1.23</td>
</tr>
<tr>
<td>SGC</td>
<td>1.14</td>
</tr>
<tr>
<td>Acetal-POVPC</td>
<td>1.14</td>
</tr>
<tr>
<td>KODA-PPC</td>
<td>0.29</td>
</tr>
<tr>
<td>PONPC</td>
<td>1.07</td>
</tr>
<tr>
<td>Furybutanoyl-SFC</td>
<td>0.47</td>
</tr>
<tr>
<td>KDDia-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>PAZPC</td>
<td>0.27</td>
</tr>
<tr>
<td>KODA-SCPC</td>
<td>0.12</td>
</tr>
<tr>
<td>SonNPC</td>
<td>-0.24</td>
</tr>
<tr>
<td>Furyoctanoyl-PPC</td>
<td>0.31</td>
</tr>
<tr>
<td>KODia-PPC</td>
<td>1.12</td>
</tr>
<tr>
<td>SazPC</td>
<td>0.47</td>
</tr>
<tr>
<td>Acetal-PONPC</td>
<td>0.36</td>
</tr>
<tr>
<td>KODA-PPC</td>
<td>1.52</td>
</tr>
<tr>
<td>HODA-PPC</td>
<td>1.47</td>
</tr>
<tr>
<td>12-oxo-8,10-dodecadienoil-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>Furyoctanoyl-SFC</td>
<td>0.31</td>
</tr>
<tr>
<td>KDDia-PPC</td>
<td>0.27</td>
</tr>
<tr>
<td>HDDia-PPC</td>
<td>0.13</td>
</tr>
<tr>
<td>Acetal-SONPNC</td>
<td>0.07</td>
</tr>
<tr>
<td>8-oxo-9,11-tridecadienoil-PPC</td>
<td>0.50</td>
</tr>
<tr>
<td>HODA-SFC</td>
<td>0.31</td>
</tr>
<tr>
<td>KDDia-SFC</td>
<td>0.56</td>
</tr>
<tr>
<td>HDIA-PPC</td>
<td>0.63</td>
</tr>
<tr>
<td>10-ox-5,8,11-tridecatrienoil-PPC</td>
<td>0.48</td>
</tr>
<tr>
<td>PLPC-keto</td>
<td>0.48</td>
</tr>
<tr>
<td>PLPC-PPC</td>
<td>1.42</td>
</tr>
<tr>
<td>PLPC-epoxy,keto</td>
<td>1.42</td>
</tr>
<tr>
<td>PLPC-PPC</td>
<td>1.42</td>
</tr>
<tr>
<td>PAPC-keto</td>
<td>0.56</td>
</tr>
<tr>
<td>PAPC-PPC</td>
<td>1.53</td>
</tr>
<tr>
<td>SLPC-keto</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Strategy 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>Log2FoldChange</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLPC-PPC</td>
<td>2.86</td>
</tr>
<tr>
<td>PLPC-OOH,keto</td>
<td>1.60</td>
</tr>
<tr>
<td>PLPC-OOH,OH</td>
<td>1.43</td>
</tr>
<tr>
<td>PLPC-diOH,epoxy</td>
<td>1.41</td>
</tr>
<tr>
<td>IsoPG(A2,J2)-PPC</td>
<td>1.29</td>
</tr>
<tr>
<td>PAPC-OOH</td>
<td>1.37</td>
</tr>
<tr>
<td>SLC-P-epoxy,keto</td>
<td>1.37</td>
</tr>
<tr>
<td>2,3-dinor-isoTxB2-PPC</td>
<td>1.31</td>
</tr>
<tr>
<td>15-deoxy-Δ1Δ14-isoPGJ2-PPC</td>
<td>1.36</td>
</tr>
<tr>
<td>SLC-P-epoxy</td>
<td>1.36</td>
</tr>
<tr>
<td>SLC-PPC</td>
<td>1.06</td>
</tr>
<tr>
<td>SLC-trioOH</td>
<td>1.32</td>
</tr>
<tr>
<td>isoPG(A2,J2)-SC</td>
<td>1.36</td>
</tr>
<tr>
<td>SLC-P-epoxy</td>
<td>1.36</td>
</tr>
<tr>
<td>SLC-OH,keto</td>
<td>1.30</td>
</tr>
<tr>
<td>isoPC[G2,J2,D2]-SC</td>
<td>1.76</td>
</tr>
<tr>
<td>SLC-PPC</td>
<td>1.89</td>
</tr>
<tr>
<td>SLC-trioOH</td>
<td>1.89</td>
</tr>
<tr>
<td>isoPGF2α-SC</td>
<td>1.89</td>
</tr>
<tr>
<td>SLC-OH,keto</td>
<td>1.89</td>
</tr>
<tr>
<td>KODia-SFC</td>
<td>0.73</td>
</tr>
<tr>
<td>SEPC</td>
<td>0.88</td>
</tr>
<tr>
<td>isoPG(E2,J2,D2)-SC</td>
<td>1.81</td>
</tr>
<tr>
<td>SLC-trioOH</td>
<td>1.81</td>
</tr>
<tr>
<td>isoPGF2α-SC</td>
<td>1.81</td>
</tr>
<tr>
<td>SLC-OH,keto</td>
<td>1.81</td>
</tr>
<tr>
<td>KDDia-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>KODA-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>HODA-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>12-oxo-8,10-dodecadienoil-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>Furyoctanoyl-SFC</td>
<td>0.36</td>
</tr>
<tr>
<td>KDDia-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>HDDia-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>Acetal-SONPC</td>
<td>0.36</td>
</tr>
<tr>
<td>8-oxo-9,11-tridecadienoil-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>HODA-SFC</td>
<td>0.36</td>
</tr>
<tr>
<td>KDDia-SFC</td>
<td>0.36</td>
</tr>
<tr>
<td>HDIA-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>10-ox-5,8,11-tridecatrienoil-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>PLPC-keto</td>
<td>0.36</td>
</tr>
<tr>
<td>PLPC-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>PLPC-epoxy,keto</td>
<td>0.36</td>
</tr>
<tr>
<td>PLPC-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>PAPC-keto</td>
<td>0.36</td>
</tr>
<tr>
<td>PAPC-PPC</td>
<td>0.36</td>
</tr>
<tr>
<td>SLPC-keto</td>
<td>0.36</td>
</tr>
</tbody>
</table>

White et al, JHLT 2013
Post-transplant function

<table>
<thead>
<tr>
<th>Function</th>
<th>Baseline</th>
<th></th>
<th>Post-Transplant</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strategy 1</td>
<td>Strategy 2</td>
<td>p value</td>
<td>Strategy 1</td>
</tr>
<tr>
<td>Systolic Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dP/dt max (mmHg/s)</td>
<td>845 (120)</td>
<td>925 (126)</td>
<td>0.181</td>
<td>718 (156)</td>
</tr>
<tr>
<td>ESPVR</td>
<td>1.36 (0.38)</td>
<td>1.35 (0.34)</td>
<td>0.981</td>
<td>4.50 (5.93)</td>
</tr>
<tr>
<td>PRSW</td>
<td>36.7 (11.0)</td>
<td>37.6 (17.5)</td>
<td>0.892</td>
<td>19.7 (10.9)</td>
</tr>
<tr>
<td>Diastolic Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dP/dt min (mmHg/s)</td>
<td>-817 (162)</td>
<td>-955 (154)</td>
<td>0.084</td>
<td>-475 (201)</td>
</tr>
<tr>
<td>EDPVR</td>
<td>0.14 (0.03)</td>
<td>0.15 (0.04)</td>
<td>0.575</td>
<td>0.60 (0.40)</td>
</tr>
<tr>
<td>Tau (ms)</td>
<td>38.6 (4.4)</td>
<td>42.7 (5.8)</td>
<td>0.108</td>
<td>65.2 (21.1)</td>
</tr>
</tbody>
</table>

White et al, JHLT 2013
Summary

- Controlled initial reperfusion with a strategy that avoids hypothermia and hyperkalemia resulted in improved function and outcomes
 - Beneficial effects of adenosine for preventing I/R injury
 - Avoidance of recurrent ischemia
Temperature and ATP production

5C 25C 35C

% Normal ATP Production

0 10 20 30 40 50 60 70 80 90 100

5C 25C 35C
Normothermic ex vivo heart perfusion

- **Standoff 15min**
- **Vent Off**
- **Death**
- **Procurement**
- **Reperfusion 5C**

(N=6)

Normothermic ex vivo heart perfusion

- **Standoff 15min**
- **Vent Off**
- **Death**
- **Procurement**
- **Reperfusion 25C**

(N=5)

Normothermic ex vivo heart perfusion

- **Standoff 15min**
- **Vent Off**
- **Death**
- **Procurement**
- **Reperfusion 35C**

(N=7)

Functional Assessment
Temperature and reperfusion of the DCD heart

White et al, AJT 2016
Endothelial integrity

White et al, AJT 2016
Histology - Electron Microscopy

Endothelial Injury

Myocyte Injury

Electron Microscopy Injury Score

5C

25C

35C

$p < 0.05$

$p = 0.07$

White et al, AJT 2016
Functional evaluation

![Graph showing dP/dt maximum and minimum across T1, T3, and T5 for 5C, 25C, and 35C conditions.]

- For dP/dt maximum, p < 0.05 for 25C and 35C compared to 5C.
- For dP/dt minimum, p < 0.05 for 25C and 35C compared to 5C.

White et al, AJT 2016
Summary

• Initial reperfusion conditions impact the severity of injury and functional recovery of DCD hearts

• Avoidance of profound hypothermia during initial reperfusion of DCD hearts
 • Minimizes injury
 • Improves functional recovery
Preservation/Cardioplegic solutions

• These are used at initial reperfusion
• They do not contemplate any specific IRI target nor allow ischemic postconditioning
• All are delivered at profoundly hypothermic conditions
• All are hyperkalemic
• Varying $[\text{Ca}^{2+}]$ and $[\text{Mg}^{2+}]$
Resuscitation of the DCD heart

Increasing the Tolerance of DCD Hearts to Warm Ischemia by Pharmacological Postconditioning
Adenosine-lidocaine cardioplegia

- Adapted from Dobson and Rudd

Adenosine
- Activates the reperfusion injury salvage kinase (RISK) pathway
- Up-regulates the anti-apoptotic protein Bcl-2
- Attenuates neutrophil infiltration into endothelial cells
- Inhibits the generation of reactive oxygen species

Lidocaine
- Inhibits sodium fast channels and produces a diastolic arrest
- Maintains a polarized membrane potential which may minimize calcium overload (in contrast to a hyperkalemic arrest)
Stepwise analysis of cardioplegia composition

Minimize Ca$^{2+}$ influx during initial reperfusion

Cardioplegic solution

- [Ca$^{2+}$] μmol/L: 50, 220, 500, 1250
- pH: 7.9, 7.4, 6.9, 6.4
15-minute Standoff

- Normothermic ex vivo heart perfusion (N=4)
 - 3-minute IR, $[\text{Ca}]=0.05$

- Normothermic ex vivo heart perfusion (N=9)
 - 3-minute IR, $[\text{Ca}]=0.22$

- Normothermic ex vivo heart perfusion (N=4)
 - 3-minute IR, $[\text{Ca}]=0.50$

- Normothermic ex vivo heart perfusion (N=5)
 - 3-minute IR, $[\text{Ca}]=1.25$

Functional Assessment (Working Mode)
- LAP=8, HR=100, Aortic diastolic pressure=40
Edema

Function

Ca^{2+} 0.05 Ca^{2+} 0.22 Ca^{2+} 0.50 Ca^{2+} 1.25

0.05 0.22 0.50 1.25

$\text{Cardiac Index} (\text{ml/min/gram})$

Initial reperfusion $[\text{Ca}^{2+}]$

Initial reperfusion $[\text{Ca}^{2+}]$

White et al, ATS 2016
Summary

• Initial normocalcemic reperfusion is detrimental
 • Promotes Na-Ca$^{2+}$ exchange and Ca$^{2+}$ overload

• Initial hypocalcemic reperfusion improves the functional recovery of DCD hearts
 • 220 µmol/L provides the best functional recovery

• Profoundly hypocalcemic reperfusion is detrimental
 • \leq 50 µmol/L may promote the calcium paradox
• Acidosis?
• Intracellular sodium overload?
15-minute Standoff
Normothermic ex vivo heart perfusion (N=5)

3-minute IR pH=7.9

15-minute Standoff
Normothermic ex vivo heart perfusion (N=9)

3-minute IR pH=7.4

15-minute Standoff
Normothermic ex vivo heart perfusion (N=8)

3-minute IR pH=6.9

15-minute Standoff
Normothermic ex vivo heart perfusion (N=6)

3-minute IR pH=6.4

Warm ischemia
Initial Reperfusion
Ex vivo heart perfusion

Functional Assessment (Working Mode)
LAP=8, HR=100, Aortic diastolic pressure=40
Edema

Function

Initial reperfusion pH

Initial reperfusion pH

White et al, ATS 2016
Summary

• Initial alkalotic reperfusion is detrimental
 • Promotes $\text{Na}^+ - \text{H}^+$ exchange and worsens Na^+ and Ca^{2+} overload

• Profound acidosis during initial reperfusion is detrimental
 • pH to extreme for necessary enzymatic function

• Mild acidosis during initial reperfusion may be beneficial
Effect of WLST on O_2 delivery

White et al, AJT 2016
Effect of WLST on ventricular distension

White et al, AJT 2016
Conclusion

• DCD organs are unique and must be treated differently

• DCD hearts can be resuscitated and transplanted

• Recovery of function can be optimized
 • Multiple therapeutic targets
 • Extrapolation of data from IR literature
Future Directions

- Defining the onset of myocardial stress during DCD
- Extending safe warm ischemic period
- Optimizing initial reperfusion solution
- Optimizing ex vivo heart perfusion protocols
Acknowledgements

• Christopher White
• Sanaz Hatami
• Jayan Nagendran
• Larry Hryshko
• Jason Dyck
• Evangelos Michelakis
• Stephen Large
www.cntrp.ca/grant_competitions
Deadline – Oct 19, 2017
6 National Grants at $30K each

Proposals are now being accepted.

Nous acceptons actuellement des soumissions.
The CNTRP is...

- a coalition of over 300 investigators, trainees, patient partners and collaborators
- performing studies across all four health research themes: basic biomedical, clinical, health services/policy and population research
- At 30 centres & universities in 9 provinces across Canada
- in French and English
- 7 projects and 4 core platforms (over 60 integrated sub-projects)
www.cntrp.ca/grant_competitions
Deadline – Oct 19, 2017
6 National Grants at $30K each

Proposals are now being accepted.

Nous acceptons actuellement des soumissions.