Continuous Negative Abdominal Pressure (CNAP) - Augments PEEP, Reduces Lung Injury

Physiology and Experimental Medicine, Department of Critical Care Medicine, Hospital for Sick Children, University of Toronto
Takeshi Yoshida
Abdominal pressure

Increased abdominal pressure

Dependent Collapse
hyperinflation or collapse

PEEP 6cmH\textsubscript{2}O

![Diagram showing hyperinflation and collapse](image)
hyperinflation or collapse

PEEP 6cmH$_2$O

- 0%
- 30%

PEEP 12cmH$_2$O

- 10%
- 15%

Hiperdistensão
Colapso cumulativo
hyperinflation or collapse

PEEP 6cmH$_2$O
- 0% Hyperdistensão
- 30% Colapso cumulativo

PEEP 12cmH$_2$O
- 10% Hyperdistensão
- 15% Colapso cumulativo

PEEP 18cmH$_2$O
- 30% Hyperdistensão
- 0% Colapso cumulativo
Decreased abdominal pressure

3.5 cmH$_{2}$O

1.8 cmH$_{2}$O!!

Normal

Eviscerated

Ventral

Dorsal

Vertical gradient

Respiration Physiology 1970; 8: 332–
Vertical position

Supine to Vertical 1 hour-Vertical

in oxygenation. Relief of abdominal compression on lung bases associated with verticalization may allow caudal displacement of the diaphragm and subsequently recruitment of dependent lung area [4, 8]. The higher volumes

CNAP Device

Patent for CNAP device is applied (BK, TY, DE).
Hypothesis

- CNAP reduce abdominal pressure, recruit dorsal atelectasis
Hypothesis

- CNAP reduce abdominal pressure, recruit dorsal atelectasis
- CNAP reduce lung injury.
Methods

Instrumentation

Pig

Intubation
A line
CV line
S-G line
Esophageal balloon
EIT
Methods

Instrumentation

- Intubation
- A line
- CV line
- S-G line
- Esophageal balloon
- EIT

Lung Injury

- Surfactant depletion
 + VILI

Pig
Methods

Instrumentation
- Pig
- Intubation
- A line
- CV line
- S-G line
- Esophageal balloon
- EIT

Lung Injury
- Surfactant depletion
- + VILI

Progressive de-recruitment
- ± CNAP -5cmH₂O
- Decremental PEEP steps
 - 20
 - 18
 - 16
 - 14
 - 12
 - 10
 - 8
 - 6
 - 4

- CT
- Pleural pressure measurements
P/F ratio

PEEP, cmH$_2$O

mmHg
P/F ratio

PEEP, cmH₂O

(* P<0.05, vs. PEEP)
Expiratory transpulmonary pressure

PEEP, cmH\(_2\)O

<table>
<thead>
<tr>
<th>PEEP, cmH(_2)O</th>
<th>exp PL_PEEP</th>
<th>exp PL_CNAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-2.5</td>
<td>-3</td>
</tr>
<tr>
<td>18</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>16</td>
<td>-1.5</td>
<td>-3</td>
</tr>
<tr>
<td>14</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>-1.5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

2.5 cmH\(_2\)O
PEEP (NO CNAP)

Transpulmonary pressure: cmW

Pearson r = 0.85
P = 0.000
P/F ratio

PEEP (NO CNAP) PEEP + CNAP

Transpulmonary pressure: \text{cmW}

Pearson r = 0.85 Pearson r = 0.34

\text{P = 0.000} \text{P = 0.004}
Ventilation

PEEP (No CNAP)
Ventilation

<table>
<thead>
<tr>
<th>PEEP (No CNAP)</th>
<th>PEEP+CNAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Diagrams represent the ventilation settings for PEEP and PEEP+CNAP.
Aeration

PEEP10

Non-aeration: 79%
Aeration

PEEP10

PL: -0.5

Non-aeration: 79%

PEEP 10 + CNAP -5

PL: 2.3

Non-aeration: 27%!!
Aeration

PEEP10

PL: -0.5

Non-aeration: 79%
Aeration

Non-aeration: 79%

PEEP 10
PL: -0.5

PEEP 6 + CNAP -5
PL: -1.0
Aeration

PEEP10
PL: -0.5
Non-aeration: 79%

PEEP 6 + CNAP -5
PL: -1.0
Non-aeration: 56%!!
Aeration

PEEP (NO CNAP)

Transpulmonary pressure: cmW
Aeration

PEEP (NO CNAP) PEEP + CNAP

Transpulmonary pressure: cmW Transpulmonary pressure: cmW
Pleural pressure distribution

ventral

PEEP (NO CNAP)

Ppl nondependent

Ppl dependent

10.5
Pleural pressure distribution

ventral

PEEP (NO CNAP)

PEEP + CNAP

Ppl nondependent Ppl dependent

Ppl nondependent Ppl dependent

10.5

7.1
Shape of chest wall

PEEP (NO CNAP)
Shape of chest wall

PEEP (NO CNAP)

PEEP + CNAP

5cm of caudal shift
Gross pathology

PEEP (NO CNAP)
Gross pathology

PEEP (NO CNAP)

PEEP + CNAP
Wet to Dry

![Graph showing comparison between PEEP (No CNAP) and CNAP + PEEP.](image)

(* P<0.01, vs. PEEP)
Cytokine

IL-6 in BAL

PEEP (No CNAP) \(\text{CNAP + PEEP}\)

IL-6 in tissue

PEEP \(\text{CNAP}\)

nondependent middle dependent

(# \(P<0.05\), vs. PEEP) (* \(P<0.01\), vs. PEEP)
Conclusion

CNAP + PEEP vs. PEEP

- Selectively Recruits
- Improves Lung Function
- Mechanism different to additional PEEP
- Lessens Injury
Pleural pressure distribution

ventral

Ppl nondependent
Ppl dependent

Ppl nondependent
Ppl depndent

dorsal
Pleural pressure distribution

ventral

PEEP (NO CNAP)

PEEP + CNAP

dorsal
Ventilation

PEEP (NO CNAP)

PEEP + CNAP

Pearson $r = 0.70$, $p = 0.000$

Pearson $r = -0.16$, $p = 0.178$
ARDS (No CNAP)

Vertical gradient

P_{pl}

4

10

14

dorsal

ventral
ARDS (No CNAP)

- Ventral
- Hyperinflation
- Collapse

PEEP 12

$P_{pl} = P_L$

4

14

8

10

-2
ARDS (CNAP)

Vertical gradient

PEEP 7

\[P_{pl} = P_L \]

2

5

7

0