Pituitary Complications in Traumatic Brain Injury

François Lauzier, MD, MSc, FRCP

Assistant Professor
Division of Critical Care Medicine
Department of Anesthesiology and Critical Care Medicine
Department of Medicine
Université Laval

FRQS Career Scientist
Population Health and Optimal Health Practice Research Unit
CHU de Québec-Université Laval Research Center
Conflict of interest

• None from pharmaceutical companies

• Granting agencies
 Career Award from FRQS
 Operating grants from CIHR and FRQS
Objectives

• Describe the **pathophysiology** of pituitary complications in traumatic brain injuries (TBI)

• Review the current literature regarding the **prevalence, predictors** and **clinical impacts** of pituitary complications in this population

• Present the objectives of the **PIT-TBI pilot study**
Where this idea is coming from?

Acquired growth hormone deficiency and hypogonadotropic hypogonadism in a subject with repeated head trauma, or Tintin goes to the neurologist

43 concussions
Delayed growth
Delayed onset of puberty
Lack of libido

Cyr A et al., CMAJ 2004;171:1433-4
Post-mortem lesions

50 %

Microhemorrhages of the hypothalamus

Anterior pituitary infarct

Compton R, *Brain* 1971;94:165-72
Daniel PM et al., *J Pathol* 1973;111:135-8
Early MRI:
Abnormal findings in 30%

Late MRI:
Decreased in pituitary size

Maiya B et al., *Intens Care Med* 2008;34:468-75
Apparent Diffusion Coefficient

ADC at 2 weeks might be associated with pituitary disorders at 6 months

Zheng P et al., *J Neurosurg* 2015;123:75-80
Auto-immunity?

- 25 patients from 1 center
- 50 % with pituitary disorder at 1 year
- No antibodies in non-TBI pts
- Anti-hypothalamus antibodies
 - In 71 % of pts with pituitary disorders (vs. 17%)
- Anti-pituitary antibodies
 - In 80 % of pts with pituitary disorders (vs. 20%)

Tanriverdi F et al., *J Neurotrauma* 2013;30:1426-33
Genotype APO E3/E3?

Protecting effect?
Odds ratio: 0.3 (95% CI 0.11-0.78)

Tanriverdi F et al., J Neurotrauma 2008;25:1071-7
What is the real prevalence of pituitary disorders following TBI?
Clinical Outcomes, Predictors, and Prevalence of Anterior Pituitary Disorders Following Traumatic Brain Injury: A Systematic Review

François Lauzier, MD, MSc¹,²,³; Alexis F. Turgeon, MD, MSc¹,²; Amélie Boutin, MSc¹; Michèle Shemilt, BSc¹; Isabelle Côté, MD¹,³; Olivier Lachance¹; Patrick M. Archambault, MD, MSc¹,²,⁴,⁵; François Lamontagne, MD, MSc⁶; Lynne Moore, PhD¹,⁷; Francis Bernard, MD⁸,⁹; Claudia Gagnon, MD³,¹⁰; Deborah Cook, MD, MSc¹¹,¹²

(Crit Care Med 2014; 42:712–721) March 2014 • Volume 42 • Number 3
Systematic search

Inclusion criteria
- Any study design including at least 5 TBI adults for whom at least one pituitary axis was assessed

Exclusion criteria
- No control group, mixed population with no distinction of patients with other acute neurological conditions

13,559 records reviewed
- 66 articles included for prevalence
- 27 articles included for predictors
- 14 articles for clinical outcomes

Lauzier F et al., *Crit Care Med* 2014;42:712-21
Low risk of bias if

- Description of inclusion/exclusion criteria (56% of studies)
- No voluntary sampling (24% of studies)
- Description of diagnostic criteria
- > 90% of eligible patients underwent appropriate diagnostic testing

Risk of bias evaluated for each pituitary axis and each time-frame

Lauzier F et al., *Crit Care Med* 2014;42:712-21
At least one pituitary deficit

Around 30% at one year
Growth hormone deficit

Around 15% at one year

<table>
<thead>
<tr>
<th></th>
<th>Acute phase (<3 months)</th>
<th>Mid term (3-12 months)</th>
<th>Long term (>12 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies including <10% mild TBI</td>
<td>6 (572)</td>
<td>13 (898)</td>
<td>25 (2024)</td>
</tr>
<tr>
<td></td>
<td>$I^2 = 96.2%$</td>
<td>$I^2 = 73.9%$</td>
<td>$I^2 = 88.3%$</td>
</tr>
<tr>
<td>Studies at low risk of bias</td>
<td>5 (423)</td>
<td>6 (384)</td>
<td>17 (1390)</td>
</tr>
<tr>
<td></td>
<td>$I^2 = 96.2%$</td>
<td>$I^2 = 0%$</td>
<td>$I^2 = 77.8%$</td>
</tr>
<tr>
<td>Studies including <10% mild TBI and at low risk of bias</td>
<td>3 (287)</td>
<td>6 (384)</td>
<td>13 (1195)</td>
</tr>
<tr>
<td></td>
<td>$I^2 = 98.0%$</td>
<td>$I^2 = 0%$</td>
<td>$I^2 = 78.8%$</td>
</tr>
<tr>
<td>All studies</td>
<td>10 (957)</td>
<td>16 (1103)</td>
<td>35 (2716)</td>
</tr>
<tr>
<td></td>
<td>$I^2 = 93.5%$</td>
<td>$I^2 = 76.0%$</td>
<td>$I^2 = 88.4%$</td>
</tr>
</tbody>
</table>
Hypogonadism

Around 10% at one year

<table>
<thead>
<tr>
<th></th>
<th>Acute phase (<3 months)</th>
<th>Mid term (3-12 months)</th>
<th>Long term (>12 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies including <10% mild TBI</td>
<td>8 (614) (I^2 = 97.6%)</td>
<td>13 (963) (I^2 = 79.7%)</td>
<td>22 (1812) (I^2 = 85.1%)</td>
</tr>
<tr>
<td>Studies at low risk of bias</td>
<td>6 (444) (I^2 = 96.0%)</td>
<td>7 (328) (I^2 = 84.0%)</td>
<td>15 (1013) (I^2 = 78.1%)</td>
</tr>
<tr>
<td>Studies including <10% mild TBI and at low risk of bias</td>
<td>4 (321) (I^2 = 95.4%)</td>
<td>6 (276) (I^2 = 81.7%)</td>
<td>11 (818) (I^2 = 85.9%)</td>
</tr>
<tr>
<td>All studies</td>
<td>13 (1051) (I^2 = 96.3%)</td>
<td>16 (1168) (I^2 = 76.9%)</td>
<td>31 (2482) (I^2 = 87.4%)</td>
</tr>
</tbody>
</table>
Adrenal failure

Around 7% at one year

<table>
<thead>
<tr>
<th></th>
<th>Acute phase (<3 months)</th>
<th>Mid term (3-12 months)</th>
<th>Long term (>12 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies including <10% mild TBI</td>
<td>25 (1985)</td>
<td>11 (738)</td>
<td>9 (847)</td>
</tr>
<tr>
<td></td>
<td>$I^2 = 92.7%$</td>
<td>$I^2 = 87.9%$</td>
<td>$I^2 = 92.4%$</td>
</tr>
<tr>
<td>Studies at low risk of bias</td>
<td>7 (646)</td>
<td>4 (270)</td>
<td>14 (1179)</td>
</tr>
<tr>
<td></td>
<td>$I^2 = 93.8%$</td>
<td>$I^2 = 92.2%$</td>
<td>$I^2 = 84.9%$</td>
</tr>
<tr>
<td>Studies including <10% mild TBI and at low risk of bias</td>
<td>6 (646)</td>
<td>3 (218)</td>
<td>11 (575)</td>
</tr>
<tr>
<td></td>
<td>$I^2 = 94.6%$</td>
<td>$I^2 = 94.8%$</td>
<td>$I^2 = 84.5%$</td>
</tr>
<tr>
<td>All studies</td>
<td>33 (2513)</td>
<td>14 (943)</td>
<td>13 (1211)</td>
</tr>
<tr>
<td></td>
<td>$I^2 = 90.0%$</td>
<td>$I^2 = 84.6%$</td>
<td>$I^2 = 91.2%$</td>
</tr>
</tbody>
</table>
Hypothyroidism

Around 4% at one year
Could some predictors help to inform targeted screening?
TBI severity

<table>
<thead>
<tr>
<th>Study</th>
<th>Non-mild TBI</th>
<th>Mild TBI</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pituitary disorders</td>
<td>Total</td>
<td>Weight</td>
<td>M-H, Random, 95% CI</td>
</tr>
<tr>
<td>Aimaretti 2005</td>
<td>9</td>
<td>37</td>
<td>27.8%</td>
<td>1.15 [0.48, 2.73]</td>
</tr>
<tr>
<td>Bondanelli 2004</td>
<td>21</td>
<td>34</td>
<td>41.3%</td>
<td>1.65 [0.83, 3.27]</td>
</tr>
<tr>
<td>Kelly 2000</td>
<td>8</td>
<td>19</td>
<td>3.4%</td>
<td>3.40 [0.24, 47.76]</td>
</tr>
<tr>
<td>Klose 2007</td>
<td>14</td>
<td>60</td>
<td>11.2%</td>
<td>5.13 [1.23, 21.44]</td>
</tr>
<tr>
<td>Klose 2007b</td>
<td>5</td>
<td>24</td>
<td>3.0%</td>
<td>10.12 [0.59, 173.06]</td>
</tr>
<tr>
<td>Tanturri 2008</td>
<td>4</td>
<td>11</td>
<td>13.4%</td>
<td>2.50 [0.63, 8.45]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>185</td>
<td></td>
<td></td>
<td>1.91 [1.17, 3.13]</td>
</tr>
</tbody>
</table>

Total events: 185

Heterogeneity: Tau² = 0.03; Chi² = 5.39, df = 5 (P = 0.37); I² = 7%

Test for overall effect: Z = 2.59 (P = 0.010)

Skull fracture

<table>
<thead>
<tr>
<th>Study</th>
<th>Skull fracture</th>
<th>No skull fracture</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pituitary disorders</td>
<td>Total</td>
<td>Weight</td>
<td>M-H, Random, 95% CI</td>
</tr>
<tr>
<td>Bavisetty 2008</td>
<td>9</td>
<td>31</td>
<td>13.9%</td>
<td>1.89 [0.75, 4.73]</td>
</tr>
<tr>
<td>Bondanelli 2004</td>
<td>6</td>
<td>12</td>
<td>18.1%</td>
<td>0.90 [0.48, 1.71]</td>
</tr>
<tr>
<td>Kelly 2000</td>
<td>6</td>
<td>13</td>
<td>15.8%</td>
<td>0.92 [0.42, 2.03]</td>
</tr>
<tr>
<td>Krahalik 2010</td>
<td>7</td>
<td>10</td>
<td>17.7%</td>
<td>4.61 [2.38, 8.92]</td>
</tr>
<tr>
<td>Richard 2001</td>
<td>5</td>
<td>10</td>
<td>15.6%</td>
<td>2.42 [1.09, 5.37]</td>
</tr>
<tr>
<td>Wachter 2009</td>
<td>8</td>
<td>13</td>
<td>19.0%</td>
<td>1.54 [0.87, 2.75]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>89</td>
<td></td>
<td></td>
<td>1.73 [1.03, 2.91]</td>
</tr>
</tbody>
</table>

Total events: 74

Heterogeneity: Tau² = 0.29; Chi² = 15.96, df = 5 (P = 0.007); I² = 69%

Test for overall effect: Z = 2.06 (P = 0.04)

Brain edema on CT

<table>
<thead>
<tr>
<th>Study</th>
<th>Brain edema on CT</th>
<th>No brain edema on CT</th>
<th>Risk Ratio</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pituitary disorders</td>
<td>Total</td>
<td>Weight</td>
<td>M-H, Random, 95% CI</td>
</tr>
<tr>
<td>Agha 2004</td>
<td>9</td>
<td>13</td>
<td>27.2%</td>
<td>0.98 [0.66, 1.44]</td>
</tr>
<tr>
<td>Bavisetty 2008</td>
<td>13</td>
<td>41</td>
<td>19.9%</td>
<td>4.60 [1.12, 18.84]</td>
</tr>
<tr>
<td>Kelly 2000</td>
<td>8</td>
<td>15</td>
<td>11.1%</td>
<td>8.50 [0.56, 129.42]</td>
</tr>
<tr>
<td>Krahalik 2010</td>
<td>8</td>
<td>10</td>
<td>25.9%</td>
<td>5.75 [3.06, 10.79]</td>
</tr>
<tr>
<td>Wachter 2009</td>
<td>1</td>
<td>11</td>
<td>15.9%</td>
<td>0.32 [0.05, 2.19]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>39</td>
<td></td>
<td></td>
<td>2.24 [0.69, 7.23]</td>
</tr>
</tbody>
</table>

Total events: 88

Heterogeneity: Tau² = 1.28; Chi² = 28.71, df = 4 (P < 0.000001); I² = 86%

Test for overall effect: Z = 1.35 (P = 0.18)
Do pituitary disorders really affect TBI outcomes?
Pituitary disorders vs. No pituitary disorders

<table>
<thead>
<tr>
<th>Study</th>
<th>Death</th>
<th>Total</th>
<th>Death</th>
<th>Total</th>
<th>Weight</th>
<th>M–H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimopoulou 2004</td>
<td>4</td>
<td>18</td>
<td>0</td>
<td>16</td>
<td>4.0%</td>
<td>8.05 [0.47, 138.87]</td>
</tr>
<tr>
<td>Krahulik 2010</td>
<td>32</td>
<td>98</td>
<td>22</td>
<td>88</td>
<td>45.3%</td>
<td>1.31 [0.82, 2.07]</td>
</tr>
<tr>
<td>Llompart–Pou 2008</td>
<td>8</td>
<td>39</td>
<td>19</td>
<td>126</td>
<td>31.2%</td>
<td>1.36 [0.65, 2.86]</td>
</tr>
<tr>
<td>Matsuura 1985</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>30</td>
<td>19.5%</td>
<td>4.23 [1.40, 12.73]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>45</td>
<td>156</td>
<td>46</td>
<td>260</td>
<td>100.0%</td>
<td>1.79 [0.99, 3.21]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.14; Chi² = 5.17, df = 3 (P = 0.16); I² = 42%

Test for overall effect: Z = 1.94 (P = 0.05)

GOS score comparison

<table>
<thead>
<tr>
<th>Study</th>
<th>Mean GOS</th>
<th>SD</th>
<th>Total</th>
<th>Mean GOS</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bondanelli 2004</td>
<td>4.5</td>
<td>0.5</td>
<td>27</td>
<td>4.4</td>
<td>0.5</td>
<td>23</td>
<td>35.5%</td>
<td>0.10 [−0.18, 0.38]</td>
</tr>
<tr>
<td>Jeong 2010</td>
<td>2.86</td>
<td>0.75</td>
<td>17</td>
<td>3.37</td>
<td>0.75</td>
<td>48</td>
<td>32.9%</td>
<td>−0.51 [−0.92, −0.10]</td>
</tr>
<tr>
<td>Krahulik 2010</td>
<td>4</td>
<td>1</td>
<td>19</td>
<td>5</td>
<td>0.667</td>
<td>70</td>
<td>31.6%</td>
<td>−1.40 [−1.48, −0.52]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>63</td>
<td></td>
<td>141</td>
<td>114</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>−0.45 [−1.10, 0.20]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.29; Chi² = 17.12, df = 2 (P = 0.0002); I² = 88%

Test for overall effect: Z = 1.35 (P = 0.18)
Could hormonal replacement therapy improve outcomes?
Low doses of corticosteroids in the acute phase?

HR for pneumonia: 0.75, 95% CI 0.55-1.03

Hydrocortisone 200 mg die for 7 days, 100 mg for 2 days, 50 mg for 1 day + fludrocortisone

Asehnoune K et al., Lancet Respir Med 2014; 2: 706–16
The primary end point, the GOS score at 6 months, did not differ significantly between the progesterone group and the placebo group (Table 2). The proportional-odds model revealed no effect of progesterone treatment in either unadjusted or adjusted analyses (adjusted odds ratio, 0.96; 95% confidence interval [CI], 0.77 to 1.18).

After the second interim analysis, the trial was stopped because of futility. For the primary hypothesis comparing progesterone with placebo, favorable outcomes occurred in 51.0% of patients assigned to progesterone and in 55.5% of those assigned to placebo.
Growth hormone in the chronic phase?

Level of evidence

• 1 RCT (n=21)1

Modest improvement in processing speed

1High Jr. WM et coll, *J Neurotrauma* 2010;27:1565-75
Growth hormone in the chronic phase?

Level of evidence
- 1 RCT (n=21)\(^1\)
- 1 non randomized study including some patients with no GH deficit (n=50)\(^2\)

Modest improvement in quality of life

\(^1\)High Jr. WM et coll, J Neurotrauma 2010;27:1565-75
\(^2\)Moreau OK et coll, J Neurotrauma 2013;30:998-1006
Growth hormone in the chronic phase?

Level of evidence

- 1 RCT (n=21)¹
- 1 non randomized study including some patients with no GH deficit (n=50)²
- Case series (n=161)³

Modest improvement in quality of life

¹High Jr. WM et coll, *J Neurotrauma* 2010;27:1565-75
²Moreau OK et coll, *J Neurotrauma* 2013;30:998-1006
Growth hormone in the chronic phase?

Level of evidence
• 1 RCT (n=21)¹
• 1 non randomized study including some patients with no GH deficit (n=50)²
• Case series (n=161³, n =11⁴)

Modest improvement in intelligence quotient

¹High Jr. WM et coll, *J Neurotrauma* 2010;27:1565-75
Growth hormone in the chronic phase?

Level of evidence

- 1 RCT (n=21)\(^1\)
- 1 non randomized study including some patients with no GH deficit (n=50)\(^2\)
- Case series (n=161\(^3\), n =11\(^4\))

Ready for an RCT?
A sufficiently powered RCT to assess the effect of GH on neurological prognosis or depression risk would cost more than $3 millions

\(^1\)High Jr. WM et coll, *J Neurotrauma* 2010;27:1565-75
\(^2\)Moreau OK et coll, *J Neurotrauma* 2013;30:998-1006
\(^3\)Gardner CH et coll, *Eur J Endocrinol* 2015;172:371-81
Why the PIT-TBI study is needed now?

Additive contribution of pituitary disorders to the debilitating symptoms experienced by TBI survivors?

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>TBI¹,²</th>
<th>Hypothyroidism³</th>
<th>Growth hormone deficit⁴,⁵</th>
<th>Hypogonadism⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>45-50 %</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Insomnia</td>
<td>25-35 %</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Memory</td>
<td>45-50 %</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Concentration</td>
<td>35-50 %</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Irritability</td>
<td>40-50 %</td>
<td></td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Depression</td>
<td>50 %</td>
<td>✓</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

¹Hellawell DJ et al., *Brain Injury* 1999;171:489-504
²Bombardier CH et al., *JAMA* 2010; 303:1938-45
³Samuels MH et al., *Curr Opin Endocrinol Diabetes Obes* 2014;21:377-83
⁵Morselli, LL et al., *Eur J Endocrinol* 2013;168:763-70
⁶Bhasin S et al., *J Clin Endocrinol Metab* 2010;95:2536-59
The PIT-TBI study: Study population

- 70 patients in 6 Level-1 Canadian ICU

Inclusion criteria
- Adults, moderate/severe blunt TBI, ICU ≤ 48 hours

Exclusion criteria
- Known hypopituitarism, pregnant or lactating women
- Brain death or not committed to aggressive care
- Significant altered life-expectancy at 12 months
- Neurological conditions influencing functional status assessment
- 12-month follow-up visit unlikely (no fixed address, unable to return to the study center)

ClinicalTrials.gov Identifier: NCT02480985
Course of the PIT-TBI study

ICU admission

Eligibility assessment

Consent

Data collection

Recruitment

Secondary insults

Hormone levels and biobank at D1, 3 and 7

Pituitary MRI D7

Early pituitary disorders

Late/persistent pituitary disorders

Hospital discharge

Prognosis (e GOS)

Functional status (FIM)

Quality of life (EQ-5D)

Depression (PHQ-9)

6 and 12 months follow-up
Assessment of pituitary function

Pituitary axis

- **Thyroid**
 - Static testing: TSH, FT4, T3

- **Sexual hormones**
 - Static testing: FSH/LH, estradiol or testo

- **Adrenals**
 - Dynamic testing: ACTH 1 mcg

- **Growth hormone**
 - Dynamic testing: Glucagon 1 mg
Conclusions

- TBI represents a significant socioeconomic burden
- A modest improvement of symptoms could have a significant impact
- The association between pituitary function and outcome is unclear
- **If there is no independent association:** no need for screening
- **If there is an independent association:** RCTs