ICU WEAKNESS & OUTCOMES

ICU Weakness: Molecular Mechanisms

C. C. dos Santos, M.D. M.Sc. F.R.C.P.C.
Associate Professor of Medicine, Interdepartmental Division of Critical Care
Clinician-Scientist, St. Michael's Hospital, Division of Respirology
Scientist, Keenan Center and Li Ka Shing Knowledge Institute
Scientist, Institute of Medical Sciences and Collaborative Program in
Genome Biology and Bioinformatics, University of Toronto
Disclosures

CIHR OCN 126573
CIHR MOP 106545
CIHR MOP 130331
CIHR MOP 140242
MRI Early Researchers Award
Physician Services Incorporate (PSI 0-35)
Stem Cell Network (SCN-72)
Brain-Canada (Z-BRAIN)
Ontario Thoracic Society
McLaughlin Foundation

Tissue Regeneration Therapeutics (TRT)
Northern Therapeutics Inc.
Molecular Mechanisms

- Predominant type II (fast twitch) muscle fibre atrophy
- Selective but patchy loss of myosin filaments
- Non-excitable muscle membrane

Patient Outcomes - Function
7-days, 3, 6, and 12-months post ICU discharge

FIM Total Score

6MWT (% of predicted)

FIM mean scores of 54 at 7th day to 110 at 12 mo post-ICU discharge

60\% of patients were unable to walk at 7 d
Walked distance from 24\% to 75\%\textsubscript{pred} after 12 mo
Rationale

Advance our understanding of the molecular mechanisms that underlie persistent ICU acquired muscle weakness in order to

- Better identify those at risk for long term irreversible sequelae
- To inform effective interventions
Objectives

1) Quantify the degree of skeletal muscle atrophy and functional impairment in a prospective cohort of patients enrolled in Toward RECOVER at 7 days and 6 months post ICU discharge.

2) Perform muscle biopsies (quadriceps femoris) for molecular assessments at 7 days and 6 months post ICU discharge.

3) Determine if these candidate cellular signalling/biologic processes identified in animal models to be critical to the development of ICU acquired muscle dysfunction are activated in humans.

4) Identify signalling networks/markers that are associated with improvement or sustained functional disability.
Study Design

- Inclusion Criteria:

- Pilot study – Nested Cohort Study (Towards RECOVER)

1. Acute presentation to ICU from the community or brief hospitalization (< 1 week) prior to ICU admission
2. Mechanical ventilation for at least 1 week
3. Functional independence prior to ICU admission with no pre-existing neurologic or muscle disease
Study Design

- **Exclusion Criteria:**

1. Immobile prior to ICU admission
2. Pre-existing neurologic or muscle disease
3. Other underlying comorbid disease as documented in the past medical history:
 - e.g. Active hepatitis, post-transplantation, active cancer, decision to move to comfort care,
Study Assessments

- **Functional Assessments:**
 - Skeletal muscle weakness & functional impairment, and atrophy assessed by
 - 6MW, SF-36
 - MRC bedside assessment of muscle power
 - Motor Component of the FIM
 - Quiet postural standing, gait control, isokinetic and strength testing
 - CT mid-thigh quadriceps femoris cross-sectional area (CSA)
 - NCV & EMG to assess for peripheral neuropathy, (functional muscle denervation, dropout of myofibres)
1) Molecular Assessment

- i) Levels and activation of muscle specific signalling molecules
- ii) Cellular localization/redistribution of key molecules
- iii) Morphometric & ultrastructural analyses

2) Explorative Analysis

- Microarray gene expression
- MicroRNA expression
Results

103 Towards RECOVER participants
2 MSICU and 1 Trauma ICU
Sept 2010 – April 2013

2 died
19 excluded
23 missed
32 refused

27 consented

15 - 7 day biopsy
12 - 7 day no biopsy

11 - 6 month biopsy
2 - withdrew
1 – repatriated
1 – medical issues necessitated withdrawal

2 – withdrew
4 – died ICU
2 – medical issues necessitated withdrawal
1 – attempted biopsy unsuccessful
1 - repatriated
2 – withdrew
reasons unknown

15 patients completed 7 day biopsy/assessment
11 completed 6 month biopsy/assessment

dos Santos et al, re-submission, 2015
Persistent muscle weakness correlates with sustained impairment of physical function

FIM motor subscores

% predicted 6MW distance

Quadriceps strength

MRC Sum Score

dos Santos et al, re-submission, 2015
Persistent Atrophy at 6 Months Post-ICU Discharge

dos Santos et al, re-submission, 2015
Dissociation Between Persistent Loss of Muscle Mass and Contractility

dos Santos et al, re-submission, 2015

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Sex</th>
<th>Quads Torque Nm (% pred)</th>
<th>Quads Specific Force (Nm/cm²)</th>
<th>Quads CSA (cm²)</th>
<th>Quads ΔCSA (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt 14</td>
<td>52</td>
<td>M</td>
<td>37.2</td>
<td>1.4</td>
<td>65.0</td>
<td>21.8</td>
</tr>
<tr>
<td>Pt 11</td>
<td>48</td>
<td>F</td>
<td>42.8</td>
<td>6.5</td>
<td>13.3</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Interdepartmental Division of Critical Care Medicine

UNIVERSITY OF TORONTO
Muscle protein homeostasis in critical illness

Protein synthesis
- Blunted anabolic signaling
 - Kinase deactivation
- Altered transcriptional regulation
- Compensatory protein synthesis

Protein degradation
- Increased Ca\(^{2+}\)-dependent proteolysis
- Ubiquitin proteasome activation
- Disrupted autophagy

Sepsis, inflammation, cytokines
- Anabolic pathway
 - PISK
 - AKT
 - GSK
 - mTOR
 - p70S6K
 - 4E-BP1
 - eIF-4E
 - MAPK
 - NF-κB
 - FOXO
 - HDAC
 - Transcription factors
 - Myofibrillar mRNA
 - mRNA
 - DNA
 - Muscle genes
 - Protein
 - Ribosome
 - Amino acids
 - tRNA

Proteolytic cleavage
- Ca\(^{2+}\)
- ATP
- ADP
- E2, E3
- Proteasome
- Polypeptides
- Amino acids
- Autophagosome

Resolution of Protein Degradation

dos Santos et al, re-submission, 2015
Absence of Autophagy at 6 months

dos Santos et al, re-submission, 2015
Sarcomeres and Mitochondria at 6 months

Sarcomeric structure

Dos Santos et al, re-submission, 2015
DISCOVERY

Clinical and Microarray data

* Functional Independence Measure score
* MRC Sum Score
* Quadriceps muscle mass

DISCOVERY

Validation

Modules selected based on:
1) correlation to outcomes of interest
2) Functional & phenotype enrichment
3) TF binding sites enrichment

Module 'informed' genes signature(s)

Network Analysis

DAY 7 Post-ICU

Month 6 Post-ICU

ICUAW (11-15 patients)

Healthy controls (8 subjects)

Gene Set Enrichment Analysis

ICUAW Gene signature

Independent dataset

GSEA

Co-expression Modules
Differentially expressed genes and gene-sets in ICUAW

Walsh et al. Submitted, 2015
Modules and Correlation with Phenotypes

<table>
<thead>
<tr>
<th>Module</th>
<th>Correlation with ICUAW</th>
<th>Correlation with phenotypes</th>
<th>GO and HPO terms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direction</td>
<td>Adjusted P-value</td>
<td>Strength</td>
</tr>
<tr>
<td>M1</td>
<td>-</td>
<td></td>
<td>0.56 (5.5x10^{-3})</td>
</tr>
<tr>
<td>M2</td>
<td>+</td>
<td></td>
<td>-0.60 (2.1x10^{-3})</td>
</tr>
<tr>
<td>M3</td>
<td>+</td>
<td></td>
<td>-0.65 (8.0x10^{-4})</td>
</tr>
<tr>
<td>M4</td>
<td>-</td>
<td></td>
<td>0.63 (1.3x10^{-3})</td>
</tr>
<tr>
<td>M6</td>
<td>+</td>
<td></td>
<td>-0.56 (5.5x10^{-3})</td>
</tr>
<tr>
<td>M7</td>
<td>+</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>M11</td>
<td>+</td>
<td></td>
<td>-0.67 (5.8x10^{-4})</td>
</tr>
<tr>
<td>M13</td>
<td>+</td>
<td></td>
<td>-0.53 (7.5x10^{-3})</td>
</tr>
<tr>
<td>M14</td>
<td>+</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>M16</td>
<td>-</td>
<td></td>
<td>0.70 (2.5x10^{-4})</td>
</tr>
<tr>
<td>M17</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Gene Expression Data Adjusted for Gender and Age

$R = -0.66$

$p = 3.6 \times 10^{-4}$
Module 1 (Down-regulated Day 7 post ICU discharge)
Module 3 (Up-regulated at Month 6 post-ICU discharge)

- Wound Healing and Repair
 - Connective Tissue Development
 - Extracellular Matrix Deposition
 - Wound Healing
 - Glycosaminoglycan Metabolism
 - Focal Adhesion

- Calcium Handling

- Calcium Handling and Muscle Contraction
 - positive regulation of cytosolic calcium ion concentration
 - calcium ion transport into cytosol
 - cytosolic calcium ion transport

- Regeneration and Differentiation

- Mesenchymal cell development
 - endodermal cell differentiation
 - formation of primary germ layer
 - gastrulation
 - endoderm development
Summary

- Loss of Function (FIMs) correlates with loss of strength
- Loss of strength related to loss of mass or/and contractility
- Dissociation between MASS and CONTRACTILITY
- Ongoing Proteolysis → does not explain persistent muscle loss
- Ongoing Autophagy → does not explain persistent muscle loss
- Mitochondrial structure/number → does not explain ongoing weakness
- Reconstitution of sarcomeric structure
- Correlation between change in Gene expression and Phenotype
- Novel Pathways Associated with Persistent Muscle Weakness
Thank You