Oxygen & Hypoxia: Physiological Tidbits

Arthur S. Slutsky, MD

Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael’s Hospital;
Interdepartmental Division of Critical Care Medicine, University of Toronto
Overview

- Unusual cause of increased (A-a)O2 difference
- Apneic oxygenation
- Mechanisms of cardiovascular effects of hypoxia
Case Report

- 24 year old women (with perfectly normal lungs) to ED with hyperventilation syndrome. As she walks in her PaCO₂ is 24 mmHg, and PaO₂ 118 mmHg
 - (A-a)O₂=(150-24/0.8)-118=2

- MD comes to see her; less anxious; markedly decreased ventilation; apneic for 1.5 minutes
 - PaCO₂ increases to 32 mmHg;
 - PaO₂ decreases from 118 to 60 mmHg

- Calculation of (A-a)O₂: PAO₂=PIO₂-PCO₂/R
 =150-32/0.8=110;
 - Therefore (A-a)O₂=110-60=50 mmHg
What is the reason for the increased \((A-a)O_2\)

- \(P_AO_2 = P_{I}O_2 - PaCO_2 / R\)

- \(R = \text{Respiratory quotient} = VCO_2 / VO_2\)
 - \(VCO_2 = \text{CO}_2 \text{ elimination } \sim 200 \text{ ml/min}\)
 - \(VO_2 = \text{O}_2 \text{ uptake } \sim 250 \text{ ml/min}\)

\[R = \frac{200}{250} = 0.8\]
What is the Respiratory Quotient (R)?
There are 2 R’s!

\[R_{tiss} = \frac{V_{tCO_2}}{V_{tO_2}} = \frac{200}{250} = 0.8 \]

\[R = \frac{V_{CO_2}}{V_{O_2}} = 0.8 \]
The 2 R’s are NOT necessarily equal in non-steady state conditions.
The 2 R’s are NOT necessarily equal in non-steady state conditions.

In this situation, the alveolar air equation is not valid.
When are changes in R relevant?

- Changes in diet
 - Protein vs fat vs sugar
- During periods of non-steady state
 - Acute hypoventilation
 - Acute hyperventilation
- Dialysis with a non-bicarbonate buffer
 - Dialysis-associated hypoxemia
Apneic Oxygenation

- Originally called diffusion respiration (Draper and Whitehead, 1940’s)

- Technique
 - Washout of N₂ by ventilation with 100% O₂
 - 100% O₂ @ airway opening
 - adequate oxygenation for >1 hr
 - CO₂ accumulation
Apneic Oxygenation in Man
Frumin et al *Anesthesiology* 1961

- Patients in OR: AO for 45-60 minutes
- SaO2 > 95% in all patients

![Graph showing PaCO2 and pH levels for patients](image-url)
How is it possible to obtain adequate oxygenation without ventilation?

(~10% VCO₂)
(~20 ml/min)

CO₂ into tissues
(~90% VCO₂)
(~180 ml/min)
How is it possible to obtain adequate oxygenation without ventilation?

- (~10% VCO_2)
- (~20 ml/min)
- (~250 ml/min)

CO_2 into tissues
- (~90% VCO_2)
- (~180 ml/min)
How is it possible to obtain adequate oxygenation without ventilation?

Animals can survive ~90 minutes during Apneic Oxygenation With PO₂ ~80 mmHg
Why do animals die as apneic oxygenation continues despite adequate PaO2s?
Physiological Responses to Hypoxemia

- Cardiovascular responses to hypoxemia
 - Heart rate response
 - Respiratory sinus arrhythmia
Constant Flow Ventilation

Impact of Constant Flow Ventilation on Heart Rate Response to Hypoxia

- **Rationale:**
 - Remove effect of cyclic changes in lung volume on hemodynamics

- **Methods:**
 - Studies in dogs made hypoxic
 - Spontaneous breathing
 - Constant Flow
Heart Rate b/min vs Oxygen Saturation (SaO₂).

- Squares: SB: PaCO₂ = 30 mmHg
- Diamonds: SB: PaCO₂ = 50 mmHg
- Triangles: CFV: PaCO₂ = 30 mmHg
- Circles: CFV: PaCO₂ = 50 mmHg
Respiratory Sinus Arrhythmia

Shykoff, Naqvi, Menon, Slutsky J Clin Invest 87:1621-27, 1991
Conclusions

- Interpretation of alveolar-air equation requires a consideration of respiratory quotient
- Apneic oxygenation
 - Interesting technique with potential implications for assessing brain death and tolerance to hypercapnia
- Heart-lung interactions not simply related to impact of pressures