Novel biomarkers for septic shock–associated

Hector R. Wong, MD
Division of Critical Care Medicine
Cincinnati Children’s Hospital Medical Center
and Cincinnati Children’s Research Foundation
Cincinnati, OH, USA

Canada Critical Care Forum
November 2011
Monty Python's

And Now For Something Completely Different

The Best of Monty Python's Flying Circus
No NGAL, IL-18, L-FABP, KIM-1, etc.
Rationale
Rationale

• Current biomarkers for AKI are primarily derived from ischemia models.
Rationale

• Current biomarkers for AKI are primarily derived from ischemia models.
• The pathophysiology of sepsis–related AKI is mechanistically more complex than just ischemia.
Rationale

• Current biomarkers for AKI are primarily derived from ischemia models.
• The pathophysiology of sepsis–related AKI is mechanistically more complex that just ischemia.
• The performance of current biomarkers in predicting sepsis–related AKI is not
Using whole genome expression data (microarray) for the discovery of novel candidate biomarkers for septic shock–associated renal failure (SSARF)
Approach
Approach

• Microarray-based gene expression data from 179 children with septic shock.
Approach

• Microarray–based gene expression data from 179 children with septic shock.
• Data represent the first 24 hours of presenting to the ICU with septic shock.
Approach

• Microarray–based gene expression data from 179 children with septic shock.
• Data represent the first 24 hours of presenting to the ICU with septic shock.
• Whole blood–derived RNA.
Approach

• Microarray–based gene expression data from 179 children with septic shock.
• Data represent the first 24 hours of presenting to the ICU with septic shock.
• Whole blood–derived RNA.
• 31 patients with septic shock–
Definition of SSARF
Definition of SSARF

• >200% increase of serum creatinine, relative to the median normal value for age.
Definition of SSARF

- >200% increase of serum creatinine, relative to the median normal value for age.
- Persistent up to 7 days of ICU admission.
Clinical Characteristics

<table>
<thead>
<tr>
<th></th>
<th>No SSARF (n = 148)</th>
<th>SSARF (n = 31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age in years (IQR)</td>
<td>2.4 (1.0 – 6.0)</td>
<td>2.7 (0.8 – 8.4)</td>
</tr>
<tr>
<td>Number of males (%)</td>
<td>87 (59)</td>
<td>22 (71)</td>
</tr>
<tr>
<td>Median PRISM (IQR)</td>
<td>14 (9 – 19)</td>
<td>22 (16 – 31)*</td>
</tr>
<tr>
<td>Number of deaths (%)</td>
<td>15 (10)</td>
<td>14 (45)*</td>
</tr>
<tr>
<td># with gram neg. organism (%)</td>
<td>43 (28)</td>
<td>4 (13)</td>
</tr>
<tr>
<td># with gram pos. organism (%)</td>
<td>37 (25)</td>
<td>10 (32)</td>
</tr>
<tr>
<td># with negative cultures (%)b</td>
<td>57 (39)</td>
<td>14 (45)</td>
</tr>
</tbody>
</table>
Clinical Characteristics

<table>
<thead>
<tr>
<th></th>
<th>No SSARF (n = 148)</th>
<th>SSARF (n = 31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age in years (IQR)</td>
<td>2.4 (1.0 – 6.0)</td>
<td>2.7 (0.8 – 8.4)</td>
</tr>
<tr>
<td>Number of males (%)</td>
<td>87 (59)</td>
<td>22 (71)</td>
</tr>
<tr>
<td>Median PRISM (IQR)</td>
<td>14 (9 – 19)</td>
<td>22 (16 – 31)*</td>
</tr>
<tr>
<td>Number of deaths (%)</td>
<td>15 (10)</td>
<td>14 (45)*</td>
</tr>
<tr>
<td># with gram neg. organism (%)</td>
<td>43 (28)</td>
<td>4 (13)</td>
</tr>
<tr>
<td># with gram pos. organism (%)</td>
<td>37 (25)</td>
<td>10 (32)</td>
</tr>
<tr>
<td># with negative cultures (%) b</td>
<td>57 (39)</td>
<td>14 (45)</td>
</tr>
</tbody>
</table>
Statistical Analysis to Derive Candidate Genes for SSARF
Statistical Analysis to Derive Candidate Genes for SSARF

• >80,000 gene probes.
Statistical Analysis to Derive Candidate Genes for SSARF

• >80,000 gene probes.
• ANOVA with corrections for multiple comparisons.
Statistical Analysis to Derive Candidate Genes for SSARF

• >80,000 gene probes.
• ANOVA with corrections for multiple comparisons.
• False Discovery Rate of 5%.
Statistical Analysis to Derive Candidate Genes for SSARF

- >80,000 gene probes.
- ANOVA with corrections for multiple comparisons.
- False Discovery Rate of 5%.
- SSAKI vs. no SSARF.
Statistical Analysis to Derive Candidate Genes for SSARF

• >80,000 gene probes.
• ANOVA with corrections for multiple comparisons.
• False Discovery Rate of 5%.
• SSAKI vs. no SSARF.
• 100 gene probes differentially regulated between SSARF and no SSARF.
100 gene probes differentially regulated between SSARF and no SSARF
100 gene probes differentially regulated between SSARF and no SSARF

61 unique and well-annotated genes
100 gene probes differentially regulated between SSARF and no SSARF

61 unique and well-annotated genes

21 up-regulated in SSARF, relative to no SSARF

Candidate SSARF Predictor Genes
21 genes up-regulated in SSARF vs. no SSARF

<table>
<thead>
<tr>
<th>Affymetrix ID</th>
<th>Fold Change</th>
<th>Gene Symbol</th>
<th>GenBank ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>202411_at</td>
<td>2.088</td>
<td>IFI27</td>
<td>NM_005532</td>
<td>interferon, alpha-inducible protein</td>
</tr>
<tr>
<td>207329_at</td>
<td>1.756</td>
<td>MMP8</td>
<td>NM_002424</td>
<td>matrix metallopeptidase 8</td>
</tr>
<tr>
<td>212768_s_at</td>
<td>1.711</td>
<td>OLFM4</td>
<td>AL390736</td>
<td>olfactomedin 4</td>
</tr>
<tr>
<td>219975_x_at</td>
<td>1.697</td>
<td>OLAH</td>
<td>NM_018324</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>206145_at</td>
<td>1.688</td>
<td>RHAG</td>
<td>NM_000324</td>
<td>Rh-associated glycoprotein</td>
</tr>
<tr>
<td>231688_at</td>
<td>1.666</td>
<td>MMP8</td>
<td>AW337833</td>
<td>matrix metallopeptidase 8</td>
</tr>
<tr>
<td>233126_s_at</td>
<td>1.664</td>
<td>OLAH</td>
<td>AK001844</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>211820_x_at</td>
<td>1.612</td>
<td>GYPA</td>
<td>U00179</td>
<td>glycophorin A</td>
</tr>
<tr>
<td>222945_x_at</td>
<td>1.612</td>
<td>OLAH</td>
<td>AI125696</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>220496_at</td>
<td>1.601</td>
<td>CLEC1B</td>
<td>NM_016509</td>
<td>C-type lectin domain family 1,</td>
</tr>
<tr>
<td>219478_at</td>
<td>1.601</td>
<td>WFDC1</td>
<td>NM_021197</td>
<td>WAP four-disulfide core domain 1</td>
</tr>
<tr>
<td>205110_s_at</td>
<td>1.551</td>
<td>FGF13</td>
<td>NM_004114</td>
<td>fibroblast growth factor 13</td>
</tr>
<tr>
<td>206871_at</td>
<td>1.525</td>
<td>ELA2</td>
<td>NM_001972</td>
<td>elastase 2, neutrophil</td>
</tr>
<tr>
<td>205612_at</td>
<td>1.522</td>
<td>MMRN1</td>
<td>NM_007351</td>
<td>multimerin 1</td>
</tr>
<tr>
<td>219410_at</td>
<td>1.517</td>
<td>TMEM45A</td>
<td>NM_018004</td>
<td>transmembrane protein 45A</td>
</tr>
<tr>
<td>207341_at</td>
<td>1.512</td>
<td>PRTN3</td>
<td>NM_002777</td>
<td>proteinase 3</td>
</tr>
<tr>
<td>218542_at</td>
<td>1.509</td>
<td>CEP55</td>
<td>NM_018131</td>
<td>centrosomal protein 55kDa</td>
</tr>
<tr>
<td>211372_s_at</td>
<td>1.505</td>
<td>IL1R2</td>
<td>U64094</td>
<td>interleukin 1 receptor, type II</td>
</tr>
<tr>
<td>207269_at</td>
<td>1.497</td>
<td>DEFA4</td>
<td>NM_001925</td>
<td>defensin, alpha 4, corticostatin</td>
</tr>
<tr>
<td>201292_at</td>
<td>1.492</td>
<td>TOP2A</td>
<td>AL561834</td>
<td>topoisomerase (DNA) II alpha</td>
</tr>
<tr>
<td>211821_x_at</td>
<td>1.486</td>
<td>GYPA</td>
<td>U00178</td>
<td>glycophorin A</td>
</tr>
</tbody>
</table>
Class Prediction Modeling
Class Prediction Modeling

- Can the expression patterns of the 21 gene probes predict SSARF?
Class Prediction Modeling

• Can the expression patterns of the 21 gene probes predict SSARF?
• Leave-one-out cross validation to predict SSARF and no SSARF “classes”.
Performance characteristics of class prediction modeling

<table>
<thead>
<tr>
<th></th>
<th>SSARF</th>
<th>No SSARF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted SSARF</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Predicted No SSARF</td>
<td>1</td>
<td>118</td>
</tr>
</tbody>
</table>
Performance characteristics of class prediction modeling

<table>
<thead>
<tr>
<th></th>
<th>SSARF</th>
<th>No SSARF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted SSARF</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Predicted No SSARF</td>
<td>1</td>
<td>118</td>
</tr>
</tbody>
</table>
Performance characteristics of class prediction modeling

<table>
<thead>
<tr>
<th></th>
<th>SSARF</th>
<th>No SSARF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted SSARF</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Predicted No SSARF</td>
<td>1</td>
<td>118</td>
</tr>
</tbody>
</table>
Performance characteristics of class prediction modeling

<table>
<thead>
<tr>
<th></th>
<th>SSARF</th>
<th>No SSARF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted SSARF</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Predicted No SSARF</td>
<td>1</td>
<td>118</td>
</tr>
</tbody>
</table>

Sensitivity
- 98%
- CI 81 - 100%

Specificity
- 80%
- CI 72 - 86%
Performance characteristics of class prediction modeling

<table>
<thead>
<tr>
<th></th>
<th>SSARF</th>
<th>No SSARF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted SSARF</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Predicted No SSARF</td>
<td>1</td>
<td>118</td>
</tr>
</tbody>
</table>

- **Sensitivity**: 98% (CI 81 – 100%)
- **Specificity**: 80% (CI 72 – 86%)
- **PPV**: 50% (CI 37 – 63%)
- **+LR**: 4.8 (1.6 – 6.6)
- **NPV**: 99% (CI 95 – 100%)
- **-LR**: 0.04 (0.001 – 0.28)
Current technology may allow for the generation of mRNA expression data to conduct class prediction in a clinically relevant time frame.
Current technology may allow for the generation of mRNA expression data to conduct class prediction in a clinically relevant time frame.

However, current biomarker development efforts are largely focused on serum/plasma protein measurements.
21 genes up-regulated in SSARF vs. no SSARF

<table>
<thead>
<tr>
<th>Affymetrix ID</th>
<th>Fold Change</th>
<th>Gene Symbol</th>
<th>GenBank ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>202411_at</td>
<td>2.088</td>
<td>IFI27</td>
<td>NM_005532</td>
<td>interferon, alpha-inducible protein</td>
</tr>
<tr>
<td>207329_at</td>
<td>1.756</td>
<td>MMP8</td>
<td>NM_002424</td>
<td>matrix metallopeptidase 8</td>
</tr>
<tr>
<td>212768_s_at</td>
<td>1.711</td>
<td>OLFM4</td>
<td>AL390736</td>
<td>olfactomedin 4</td>
</tr>
<tr>
<td>219975_x_at</td>
<td>1.697</td>
<td>OLAH</td>
<td>NM_018324</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>206145_at</td>
<td>1.688</td>
<td>RHAG</td>
<td>NM_000324</td>
<td>Rh-associated glycoprotein</td>
</tr>
<tr>
<td>231688_at</td>
<td>1.666</td>
<td>MMP8</td>
<td>AW337833</td>
<td>matrix metallopeptidase 8</td>
</tr>
<tr>
<td>233126_s_at</td>
<td>1.664</td>
<td>OLAH</td>
<td>AK001844</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>211820_x_at</td>
<td>1.612</td>
<td>GYP A</td>
<td>U00179</td>
<td>glycophorin A</td>
</tr>
<tr>
<td>222945_x_at</td>
<td>1.612</td>
<td>OLAH</td>
<td>AI125696</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>220496_at</td>
<td>1.601</td>
<td>CLEC1B</td>
<td>NM_016509</td>
<td>C-type lectin domain family 1,</td>
</tr>
<tr>
<td>219478_at</td>
<td>1.601</td>
<td>WFDC1</td>
<td>NM_021197</td>
<td>WAP four-disulfide core domain 1</td>
</tr>
<tr>
<td>205110_s_at</td>
<td>1.551</td>
<td>FGF13</td>
<td>NM_004114</td>
<td>fibroblast growth factor 13</td>
</tr>
<tr>
<td>206871_at</td>
<td>1.525</td>
<td>ELA2</td>
<td>NM_001972</td>
<td>elastase 2, neutrophil</td>
</tr>
<tr>
<td>205612_at</td>
<td>1.522</td>
<td>MMRN1</td>
<td>NM_007351</td>
<td>multimerin 1</td>
</tr>
<tr>
<td>219410_at</td>
<td>1.517</td>
<td>TMEM45A</td>
<td>NM_018004</td>
<td>transmembrane protein 45A</td>
</tr>
<tr>
<td>207341_at</td>
<td>1.512</td>
<td>PRTN3</td>
<td>NM_002777</td>
<td>proteinase 3</td>
</tr>
<tr>
<td>218542_at</td>
<td>1.509</td>
<td>CEP55</td>
<td>NM_018131</td>
<td>centrosomal protein 55kDa</td>
</tr>
<tr>
<td>211372_s_at</td>
<td>1.505</td>
<td>IL1R2</td>
<td>U64094</td>
<td>interleukin 1 receptor, type II</td>
</tr>
<tr>
<td>207269_at</td>
<td>1.497</td>
<td>DEFA4</td>
<td>NM_001925</td>
<td>defensin, alpha 4, corticostatin</td>
</tr>
<tr>
<td>201292_at</td>
<td>1.492</td>
<td>TOP2A</td>
<td>AL561834</td>
<td>topoisomerase (DNA) II alpha</td>
</tr>
<tr>
<td>211821_x_at</td>
<td>1.486</td>
<td>GYP A</td>
<td>U00178</td>
<td>glycophorin A</td>
</tr>
<tr>
<td>Affymetrix ID</td>
<td>Fold Change</td>
<td>Gene Symbol</td>
<td>GenBank ID</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>202411_at</td>
<td>2.088</td>
<td>IFI27</td>
<td>NM_005532</td>
<td>interferon, alpha-inducible protein</td>
</tr>
<tr>
<td>207329_at</td>
<td>1.756</td>
<td>MMP8</td>
<td>NM_002424</td>
<td>matrix metalloproteinase 8</td>
</tr>
<tr>
<td>212768_s_at</td>
<td>1.711</td>
<td>OLFM4</td>
<td>AL390736</td>
<td>olfactomedin 4</td>
</tr>
<tr>
<td>219975_x_at</td>
<td>1.697</td>
<td>OLAH</td>
<td>NM_018324</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>206145_at</td>
<td>1.688</td>
<td>RHAG</td>
<td>NM_000324</td>
<td>Rh-associated glycoprotein</td>
</tr>
<tr>
<td>231688_at</td>
<td>1.666</td>
<td>MMP8</td>
<td>AW337833</td>
<td>matrix metalloproteinase 8</td>
</tr>
<tr>
<td>233126_s_at</td>
<td>1.664</td>
<td>OLAH</td>
<td>AK001844</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>211820_at</td>
<td>1.612</td>
<td>GYPA</td>
<td>U00179</td>
<td>glycophorin A</td>
</tr>
<tr>
<td>222945_x_at</td>
<td>1.612</td>
<td>OLAH</td>
<td>AI125696</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>220496_at</td>
<td>1.601</td>
<td>CLEC1B</td>
<td>NM_016509</td>
<td>C-type lectin domain family 1,</td>
</tr>
<tr>
<td>219478_at</td>
<td>1.601</td>
<td>WFDC1</td>
<td>NM_021197</td>
<td>WAP four-disulfide core domain 1</td>
</tr>
<tr>
<td>205110_s_at</td>
<td>1.551</td>
<td>FGF13</td>
<td>NM_004114</td>
<td>fibroblast growth factor 13</td>
</tr>
<tr>
<td>206871_at</td>
<td>1.525</td>
<td>ELA2</td>
<td>NM_001972</td>
<td>elastase 2, neutrophil</td>
</tr>
<tr>
<td>205612_at</td>
<td>1.522</td>
<td>MMRN1</td>
<td>NM_007351</td>
<td>multimerin 1</td>
</tr>
<tr>
<td>219410_at</td>
<td>1.517</td>
<td>TMEM45A</td>
<td>NM_018004</td>
<td>transmembrane protein 45A</td>
</tr>
<tr>
<td>207341_at</td>
<td>1.512</td>
<td>PRTN3</td>
<td>NM_002777</td>
<td>proteinase 3</td>
</tr>
<tr>
<td>218542_at</td>
<td>1.509</td>
<td>CEP55</td>
<td>NM_018131</td>
<td>centrosomal protein 55kDa</td>
</tr>
<tr>
<td>211372_s_at</td>
<td>1.505</td>
<td>IL1R2</td>
<td>U64094</td>
<td>interleukin 1 receptor, type II</td>
</tr>
<tr>
<td>207269_at</td>
<td>1.497</td>
<td>DEFA4</td>
<td>NM_001925</td>
<td>defensin, alpha 4, corticostatin</td>
</tr>
<tr>
<td>201292_at</td>
<td>1.492</td>
<td>TOP2A</td>
<td>AL561834</td>
<td>topoisomerase (DNA) II alpha</td>
</tr>
<tr>
<td>211821_x_at</td>
<td>1.486</td>
<td>GYPA</td>
<td>U00178</td>
<td>glycophorin A</td>
</tr>
</tbody>
</table>
21 genes up-regulated in SSARF vs. no SSARF

<table>
<thead>
<tr>
<th>Affymetrix ID</th>
<th>Fold Change</th>
<th>Gene Symbol</th>
<th>GenBank ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>202411_at</td>
<td>2.088</td>
<td>IFI27</td>
<td>NM_005532</td>
<td>interferon, alpha-inducible protein</td>
</tr>
<tr>
<td>207329_at</td>
<td>1.756</td>
<td>MMP8</td>
<td>NM_002424</td>
<td>matrix metallopeptidase 8</td>
</tr>
<tr>
<td>212768_s_at</td>
<td>1.711</td>
<td>OLFM4</td>
<td>AL390736</td>
<td>olfactomedin 4</td>
</tr>
<tr>
<td>219975_x_at</td>
<td>1.697</td>
<td>OLAH</td>
<td>NM_018324</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>206145_at</td>
<td>1.688</td>
<td>RHAG</td>
<td>NM_000324</td>
<td>Rh-associated glycoprotein</td>
</tr>
<tr>
<td>231688_at</td>
<td>1.666</td>
<td>MMP8</td>
<td>AW337833</td>
<td>matrix metallopeptidase 8</td>
</tr>
<tr>
<td>233126_s_at</td>
<td>1.664</td>
<td>OLAH</td>
<td>AK001844</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>211820_x_at</td>
<td>1.612</td>
<td>GYPA</td>
<td>U00179</td>
<td>glycophorin A</td>
</tr>
<tr>
<td>222945_x_at</td>
<td>1.612</td>
<td>OLAH</td>
<td>AI125696</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>220496_at</td>
<td>1.601</td>
<td>CLEC1B</td>
<td>NM_016509</td>
<td>C-type lectin domain family 1,</td>
</tr>
<tr>
<td>219478_at</td>
<td>1.601</td>
<td>WFDC1</td>
<td>NM_021197</td>
<td>WAP four-disulfide core domain 1</td>
</tr>
<tr>
<td>205110_s_at</td>
<td>1.551</td>
<td>FGF13</td>
<td>NM_004114</td>
<td>fibroblast growth factor 13</td>
</tr>
<tr>
<td>206871_at</td>
<td>1.525</td>
<td>ELA2</td>
<td>NM_001972</td>
<td>elastase 2, neutrophil</td>
</tr>
<tr>
<td>205612_at</td>
<td>1.522</td>
<td>MMRN1</td>
<td>NM_007351</td>
<td>multimerin 1</td>
</tr>
<tr>
<td>219410_at</td>
<td>1.517</td>
<td>TMEM45A</td>
<td>NM_018004</td>
<td>transmembrane protein 45A</td>
</tr>
<tr>
<td>207341_at</td>
<td>1.512</td>
<td>PRTN3</td>
<td>NM_002777</td>
<td>proteinase 3</td>
</tr>
<tr>
<td>218542_at</td>
<td>1.509</td>
<td>CEP55</td>
<td>NM_018131</td>
<td>centrosomal protein 55kDa</td>
</tr>
<tr>
<td>211372_s_at</td>
<td>1.505</td>
<td>IL1R2</td>
<td>U64094</td>
<td>interleukin 1 receptor, type II</td>
</tr>
<tr>
<td>207269_at</td>
<td>1.497</td>
<td>DEFA4</td>
<td>NM_001925</td>
<td>defensin, alpha 4, corticostatin</td>
</tr>
<tr>
<td>201292_at</td>
<td>1.492</td>
<td>TOP2A</td>
<td>AL561834</td>
<td>topoisomerase (DNA) II alpha</td>
</tr>
<tr>
<td>211821_x_at</td>
<td>1.486</td>
<td>GYPA</td>
<td>U00178</td>
<td>glycophorin A</td>
</tr>
</tbody>
</table>
21 genes up-regulated in SSARF vs. no SSARF

<table>
<thead>
<tr>
<th>Affymetrix ID</th>
<th>Fold Change</th>
<th>Gene Symbol</th>
<th>GenBank ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>202411_at</td>
<td>2.088</td>
<td>IFI27</td>
<td>NM_005532</td>
<td>interferon, alpha-inducible protein</td>
</tr>
<tr>
<td>207329_at</td>
<td>1.756</td>
<td>MMP8</td>
<td>NM_002424</td>
<td>matrix metallopeptidase 8</td>
</tr>
<tr>
<td>212768_s_at</td>
<td>1.711</td>
<td>OLFM4</td>
<td>AL390736</td>
<td>olfactomedin 4</td>
</tr>
<tr>
<td>219975_x_at</td>
<td>1.697</td>
<td>OLH4</td>
<td>NM_018324</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>206145_at</td>
<td>1.688</td>
<td>RHAG</td>
<td>NM_000324</td>
<td>Rh-associated glycoprotein</td>
</tr>
<tr>
<td>231688_at</td>
<td>1.666</td>
<td>MMP8</td>
<td>AW337833</td>
<td>matrix metallopeptidase 8</td>
</tr>
<tr>
<td>233126_s_at</td>
<td>1.664</td>
<td>OLH4</td>
<td>AK001844</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>211820_x_at</td>
<td>1.612</td>
<td>GYPA</td>
<td>U00179</td>
<td>glycophorin A</td>
</tr>
<tr>
<td>222945_x_at</td>
<td>1.612</td>
<td>OLH4</td>
<td>AI125696</td>
<td>oleoyl-ACP hydrolase</td>
</tr>
<tr>
<td>220496_at</td>
<td>1.601</td>
<td>CLEC1B</td>
<td>NM_016509</td>
<td>C-type lectin domain family 1,</td>
</tr>
<tr>
<td>219478_at</td>
<td>1.601</td>
<td>WFDC1</td>
<td>NM_021197</td>
<td>WAP four-disulfide core domain 1</td>
</tr>
<tr>
<td>205110_s_at</td>
<td>1.551</td>
<td>FGF13</td>
<td>NM_004114</td>
<td>fibroblast growth factor 13</td>
</tr>
<tr>
<td>206871_at</td>
<td>1.525</td>
<td>ELA2</td>
<td>NM_001972</td>
<td>elastase 2, neutrophil</td>
</tr>
<tr>
<td>205612_at</td>
<td>1.522</td>
<td>MMRN1</td>
<td>NM_007351</td>
<td>multimerin 1</td>
</tr>
<tr>
<td>219410_at</td>
<td>1.517</td>
<td>TMEM45A</td>
<td>NM_018004</td>
<td>transmembrane protein 45A</td>
</tr>
<tr>
<td>207341_at</td>
<td>1.512</td>
<td>PRTN3</td>
<td>NM_002777</td>
<td>proteinase 3</td>
</tr>
<tr>
<td>218542_at</td>
<td>1.509</td>
<td>CEP55</td>
<td>NM_018131</td>
<td>centrosomal protein 55kDa</td>
</tr>
<tr>
<td>211372_s_at</td>
<td>1.505</td>
<td>IL1R2</td>
<td>U64094</td>
<td>interleukin 1 receptor, type II</td>
</tr>
<tr>
<td>207269_at</td>
<td>1.497</td>
<td>DEFA4</td>
<td>NM_001925</td>
<td>defensin, alpha 4, corticostatin</td>
</tr>
<tr>
<td>201292_at</td>
<td>1.492</td>
<td>TOP2A</td>
<td>AL561834</td>
<td>topoisomerase (DNA) II alpha</td>
</tr>
<tr>
<td>211821_x_at</td>
<td>1.486</td>
<td>GYPA</td>
<td>U00178</td>
<td>glycophorin A</td>
</tr>
</tbody>
</table>
Evaluating MMP–8 and elastase–2 serum levels as SSARF
Evaluating MMP-8 and elastase-2 serum levels as SSARF

- Parallel serum samples available from 132 patients without SSARF and 18 patients with SSARF.
Evaluating MMP–8 and elastase–2 serum levels as SSARF

- Parallel serum samples available from 132 patients without SSARF and 18 patients with SSARF.
- Measured MMP–8 and elastase–2 concentrations (Luminex).
Evaluating MMP–8 and elastase–2 serum levels as SSARF

• Parallel serum samples available from 132 patients without SSARF and 18 patients with SSARF.
• Measured MMP–8 and elastase–2 concentrations (Luminex).
• Constructed ROC curves.
Evaluating MMP–8 and elastase–2 serum levels as SSARF

- Parallel serum samples available from 132 patients without SSARF and 18 patients with SSARF.
- Measured MMP–8 and elastase–2 concentrations (Luminex).
- Constructed ROC curves.
- Derived cutoffs for MMP–8 and elastase–2 with an a priori goal of
Performance calculations for MMP-8 and elastase-2 for

<table>
<thead>
<tr>
<th></th>
<th>MMP-8 (11 ng/ml)</th>
<th>Elastase-2 (235 ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>89% (64 – 98)</td>
<td>83% (58 – 96)</td>
</tr>
<tr>
<td>Specificity</td>
<td>29% (21 – 37)</td>
<td>42% (34 – 51)</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>15% (9 – 23)</td>
<td>16% (10 – 26)</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>95% (82 – 99)</td>
<td>95% (85 – 99)</td>
</tr>
</tbody>
</table>
Performance calculations for MMP–8 and elastase–2 for

<table>
<thead>
<tr>
<th></th>
<th>MMP–8 (11 ng/ml)</th>
<th>Elastase–2 (235 ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>89% (64 – 98)</td>
<td>83% (58 – 96)</td>
</tr>
<tr>
<td>Specificity</td>
<td>29% (21 – 37)</td>
<td>42% (34 – 51)</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>15% (9 – 23)</td>
<td>16% (10 – 26)</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>95% (82 – 99)</td>
<td>95% (85 – 99)</td>
</tr>
</tbody>
</table>
Performance calculations for MMP–8 and elastase–2 for

<table>
<thead>
<tr>
<th></th>
<th>MMP–8 (11 ng/ml)</th>
<th>Elastase–2 (235 ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>89% (64 – 98)</td>
<td>83% (58 – 96)</td>
</tr>
<tr>
<td>Specificity</td>
<td>29% (21 – 37)</td>
<td>42% (34 – 51)</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>15% (9 – 23)</td>
<td>16% (10 – 26)</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>95% (82 – 99)</td>
<td>95% (85 – 99)</td>
</tr>
</tbody>
</table>
Validation
Validation

• Applied same cut-off values to a separate cohort of patients.
Validation

• Applied same cut-off values to a separate cohort of patients.
• 59 patients without SSARF and 11 patients with SSARF.
Performance calculations for MMP–8 and elastase–2 for

<table>
<thead>
<tr>
<th></th>
<th>MMP–8</th>
<th>Elastase–2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100% (68 – 100)</td>
<td>100% (68 – 100)</td>
</tr>
<tr>
<td>Specificity</td>
<td>41% (28 – 50)</td>
<td>49% (36 – 62)</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>24% (13 – 39)</td>
<td>27% (15 – 43)</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>100% (83 – 100)</td>
<td>100% (85 – 100)</td>
</tr>
</tbody>
</table>
Performance calculations for MMP–8 and elastase–2 for

<table>
<thead>
<tr>
<th></th>
<th>MMP–8</th>
<th>Elastase–2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100% (68 – 100)</td>
<td>100% (68 – 100)</td>
</tr>
<tr>
<td>Specificity</td>
<td>41% (28 – 50)</td>
<td>49% (36 – 62)</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>24% (13 – 39)</td>
<td>27% (15 – 43)</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>100% (83 – 100)</td>
<td>100% (85 – 100)</td>
</tr>
</tbody>
</table>
Performance calculations for MMP-8 and elastase-2 for

<table>
<thead>
<tr>
<th></th>
<th>MMP-8</th>
<th>Elastase-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100% (68 – 100)</td>
<td>100% (68 – 100)</td>
</tr>
<tr>
<td>Specificity</td>
<td>41% (28 – 50)</td>
<td>49% (36 – 62)</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>24% (13 – 39)</td>
<td>27% (15 – 43)</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>100% (83 – 100)</td>
<td>100% (85 – 100)</td>
</tr>
</tbody>
</table>
Summary
Summary

- Whole genome mRNA expression data may be leveraged to discover novel biomarkers to predict SSARF.
Summary

• Whole genome mRNA expression data may be leveraged to discover novel biomarkers to predict SSARF.

• The expression patterns of 21 gene probes can robustly predict SSARF in a cross validation procedure.
Summary

• Whole genome mRNA expression data may be leveraged to discover novel biomarkers to predict SSARF.

• The expression patterns of 21 gene probes can robustly predict SSARF in a cross validation procedure.

• These expression patterns represent the first 24 hours of presentation to the ICU; a clinically relevant time point for SSARF prediction.
Summary

• Whole genome mRNA expression data may be leveraged to discover novel biomarkers to predict SSARF.
• The expression patterns of 21 gene probes can robustly predict SSARF in a cross validation procedure.
• These expression patterns represent the first 24 hours of presentation to the ICU; a clinically relevant time point for SSARF prediction.
• Serum protein measurements of MMP–8 and
Basu et al. Crit Care. 2011 (in
Moving forward…..
Moving forward…..

• Develop the ability to translate mRNA expression patterns for SSARF prediction in a clinically relevant manner.
Moving forward…..

- Develop the ability to translate mRNA expression patterns for SSARF prediction in a clinically relevant manner.
- Assay multiple serum protein candidate biomarkers to derive a multi-biomarker SSARF risk model.
Funding Acknowledgement

- NIH R01GM064619
- NIH RC1HL100474
- NIH R01GM096994
Thank You