Genetic Insights to Acute Lung Injury Pathogenesis

Nuala J. Meyer, MD MS
Presenter Disclosures: N. Meyer

• Personal financial relationships
 – None

• Financial support from non-commercial sources
 – NIH HL102254–02
 – University of Pennsylvania McCabe Foundation Award
Figure 1. Queen Victoria's family tree.
A Case for Heritability

Moss and Mannino Crit Care Med 2002;30:1679; Sorensen TI NEJM 1988;318:727
A Case for Heritability

- No family pedigrees of ALI
- Discordant ALI, sepsis outcomes by ethnicity

Moss and Mannino Crit Care Med 2002;30:1679; Sorensen TI NEJM 1988;318:727
A Case for Heritability

• No family pedigrees of ALI
• Discordant ALI, sepsis outcomes by ethnicity
• Strong evidence for heritability in response to infection
• Premature death from infection: Inherited Risk
 – RR 5.81 (2.47 – 13.7) if parent died before age 50
 – Significantly larger than for vascular disease, cancer

Moss and Mannino Crit Care Med 2002;30:1679; Sorensen TI NEJM 1988;318:727
Evolutionary Pressure on Injury Response
Evolutionary Pressure on Injury Response

- Sickle Cell Disease: heterozygote advantage
- Duffy antigen/DARC: CXCL receptor
Evolutionary Pressure on Injury Response

- Sickle Cell Disease: heterozygote advantage
- Duffy antigen/DARC: CXCL receptor
- Complement biology: Macular degeneration
 - CFH, BF, C2, C3
- Caspase 12: African private SNP → longer, less active proenzyme, ↑ Sepsis susceptibility, mortality
ALI as a Complex Genetic Trait
ALI as a Complex Genetic Trait

- Genetic predisposition, Environmental stress
- Few validated ALI genetic risk variants: SFTPB, IL-6, SOD3, ACE, MBL2, IL10, VEGF, FAS, MYLK, PBEF, ANGPT2
- Difficult to validate
 - Candidate gene selection
 - Effect size
 - Heterogeneity of ALI
 - Variable control populations
 - Population structure / racial admixture
ALI as a Complex Genetic Trait

- Genetic predisposition, Environmental stress
- Few validated ALI genetic risk variants
 SFTPB, IL-6, SOD3, ACE, MBL2, IL10, VEGF, FAS, MYLK, PBEF, ANGPT2
- Difficult to validate
 - Candidate gene selection
 - Effect size
 - Heterogeneity of ALI
 - Variable control populations
 - Population structure / racial admixture
Genome Wide Investigations Limited by Power and Heterogeneity

• Trauma ALI SNP Consortium (TASC)

• Identification of SNPs Predisposing to Altered ALI Risk Acute (iSPAAAR)

Christie JD PLoS One 2011 in press; Wurfel MM AJRCCM 2011 183; A5535
Genome-Wide Significance (5×10^{-8}), strong LD signal
Likely false positive

Genome–Wide Significance (5×10^{-8}), strong LD signal
Likely false positive

Genome-Wide Significance (5×10^{-8}), strong LD signal

Does not meet classical GWA significance; candidate for further study
Genome Wide Investigations Limited by Power and Heterogeneity

- Trauma ALI SNP Consortium (TASC)
 - 600 ALI Cases, 2200 Healthy controls
 - Strongest replicated associations $p \sim 1.5 \times 10^{-7}$

- Identification of SNPs Predisposing to Altered ALI Risk Acute (iSPAAAR)
 - Phase I: ALI DNA (1184) vs at-risk controls (1246)
 - Strongest associations: $p \sim 2 \times 10^{-7}$

Christie JD PLoS One 2011 in press; Wurfel MM AJRCCM 2011 183; A5535
Candidate Gene Approach

• Maximize power by limiting number of tests
 – Candidate Gene Chip: “IBC Chip”
 – ~50,000 SNPs in ~2000 Genes
• Diminish Heterogeneity
 – Single at-risk inciting event for discovery (Trauma)
 – Cohort study with at-risk controls
• Less conservative Discovery stage p-value
 – $p < 5 \times 10^{-4}$
ALI Candidate Gene 1: ANGPT2

<table>
<thead>
<tr>
<th>SNP</th>
<th>Stage I OR (95% CI)</th>
<th>Stage I p-value</th>
<th>Stage II OR (95% CI)</th>
<th>Stage II p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1868554</td>
<td>2.60 (1.66 – 4.09)</td>
<td>3.34E-05</td>
<td>1.22 (1.06 – 1.40)</td>
<td>0.017</td>
</tr>
<tr>
<td>rs2442598</td>
<td>2.73 (1.71 – 4.35)</td>
<td>2.52E-05</td>
<td>1.16 (1.01 – 1.33)</td>
<td>0.038</td>
</tr>
</tbody>
</table>

Discovery in African ancestry, Replication in European ancestry

Common variant: rs1868554 minor allele frequency 0.27
Association of chromosome 8 with trauma – associated ALI: Stage I

ANGPT2: chromosome 8, positions 6357K – 6424K

- rs1868554: p = 3.68e-05
- rs2442598: p = 2.54e-05

Mini-Manhattan plot: Association (y axis) vs Genomic locus (x axis)

Meyer NJ AJRCCM 2011
Association of chromosome 8 with trauma – associated ALI

ANGPT2: chromosome 8, positions 6360K – 6400K

rs1868554
p=0.0083

rs7825407
p=0.0019

Consistent genomic region associated with ALI: adjacent to the variably spliced 2nd exon
Huang H Nat Rev Cancer 2010
ANGPT–TIE Axis in ALI and Sepsis

Parikh PLoS Med; Bhandari Nat Med; McCarter AJRCCM; Mei PLoS Med; Gallagher Shock; Fremont J Trauma 2010; Fang J Biol Chem 2010
ANGPT–TIE Axis in ALI and Sepsis

- Exogenous ANG2 disrupts endothelium
- Rescued by ANG1
- ANGPT2−/− mice protected from inhaled LPS

Parikh PLoS Med; Bhandari Nat Med; McCarter AJRCCM; Mei PLoS Med; Gallagher Shock; Fremont J Trauma 2010; Fang J Biol Chem 2010
Exogenous ANG2 disrupts endothelium
Rescued by ANG1
ANGPT2-/- mice protected from inhaled LPS
WT mice given ANG2 → lung injury
ANGPT1 gene transfer or (MSC)–ANGPT1 mitigates lung injury response

Parikh PLoS Med; Bhandari Nat Med; McCarter AJRCCM; Mei PLoS Med; Gallagher Shock; Fremont J Trauma 2010; Fang J Biol Chem 2010
ANGPT–TIE Axis in ALI and Sepsis

- Exogenous ANG2 disrupts endothelium
- Rescued by ANG1
- ANGPT2^{-/-} mice protected from inhaled LPS
- WT mice given ANG2 \rightarrow lung injury
- ANGPT1 gene transfer or (MSC)–ANGPT1 mitigates lung injury response
- ANG2 a promising biomarker in ALI, sepsis

Parikh PLoS Med; Bhandari Nat Med; McCarter AJRCCM ; Mei PLoS Med; Gallagher Shock; Fremont J Trauma 2010; Fang J Biol Chem 2010
ANGPT–TIE Axis in ALI and Sepsis

- Exogenous ANG2 disrupts endothelium
- Rescued by ANG1
- ANGPT2−/− mice protected from inhaled LPS
- WT mice given ANG2 → lung injury
- ANGPT1 gene transfer or (MSC)–ANGPT1 mitigates lung injury response
- ANG2 a promising biomarker in ALI, sepsis
- ANG1 contributes to alveolar fluid clearance in MSC cultured medium

Parikh PLoS Med; Bhandari Nat Med; McCarter AJRCCM; Mei PLoS Med; Gallagher Shock; Fremont J Trauma 2010; Fang J Biol Chem 2010
Candidate Gene 2: IL1RN

<table>
<thead>
<tr>
<th>SNP</th>
<th>Stage I: Trauma Cohort OR (95% CI)</th>
<th>Stage II: Trauma Case–Ctrl OR (95% CI)</th>
<th>Stage III: Mixed ICU Cohort OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs315952 syn-coding</td>
<td>0.37 (0.22 – 0.95) p = 0.00019</td>
<td>0.67 (0.52 – 0.88) p = 0.0023</td>
<td>0.83 (0.71 – 0.96) p = 0.015</td>
</tr>
<tr>
<td>rs380092 intronic</td>
<td>0.38 (0.23 – 0.63) p = 0.00014</td>
<td>0.67 (0.53 – 0.89) p = 0.0036</td>
<td>0.83 (0.72 – 0.97) p = 0.017</td>
</tr>
</tbody>
</table>

- 2 IL1RN SNPs in linkage disequilibrium associate with decreased risk of ALI in 3 ICU populations
<table>
<thead>
<tr>
<th>SNP</th>
<th>Stage I: Trauma Cohort OR (95% CI)</th>
<th>Stage II: Trauma Case-Ctrl OR (95% CI)</th>
<th>Stage III: Mixed ICU Cohort OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs315952</td>
<td>0.37 (0.22 – 0.95) p = 0.00019</td>
<td>0.67 (0.52 – 0.88) p = 0.0023</td>
<td>0.83 (0.71 – 0.96) p = 0.015</td>
</tr>
<tr>
<td>syn-coding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs380092</td>
<td>0.38 (0.23 – 0.63) p = 0.00014</td>
<td>0.67 (0.53 – 0.89) p = 0.0036</td>
<td>0.83 (0.72 – 0.97) p = 0.017</td>
</tr>
<tr>
<td>intronic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 2 IL1RN SNPs in linkage disequilibrium associate with decreased risk of ALI in 3 ICU populations
• Meta-analysis of > 7000 ambulatory subjects
 – 1000 MI survivors
• rs315952 associated with IL1RA level (pQTL)
 – p = 1.5 x 10^{-11}
 – Explained the largest genetic variance of IL1RA among MI survivors (~5% variance)
• rs315952 associates with mRNA IL1RA
Implications
Implications

- Subset of patients whose ALI predisposition may be mechanistically tied to ANGPT2
 - Candidates for anti-ANG2 / pro-ANG1 therapy?
- Subpopulation of critically ill patients who are protected from ALI by virtue of IL1RN genotype (potentially through increased IL1RA?)
 - Highlights role of IL1RA homeostasis in ALI development
 - May resurrect the potential of rhIL1RA therapy
Acknowledgements

Jason Christie
Rui Feng
Mingyao Li
Melanie Rushefski
Scarlett Bellamy
Russell Localio
Bob Gallop
Michael Shashaty
Annie Campbell
Asaf Hanish

Mike Beers
Elena Atochina – Vasserman
Helen Abramova

Steve Albelda
Nilam Mangalmurti

Hakon Hakonarson
Jonathan Bradfield
Cecilia Kim
Ed Frackelton

David Christiani
Chau-Chyun Sheu
Feng Chen
Paula Tejera–Alvarez
Yang Zhao

Grant O’Keefe
Mark Wurfel

Lorraine Ware
Carolyn Calfee