Disclosure

• Hospira Pharmaceuticals
 – Unrestricted research funding
 – Honoraria for CME education administered via France Foundation
Economics in Sedation: Responsible Use of the ICU Budget

John W. Devlin, PharmD, FCCP, FCCM, Associate Professor
Northeastern University School of Pharmacy
Adjunct Associate Professor
Tufts University School of Medicine
Boston, Massachusetts
Economics in Sedation: Responsible Use of the

John W. Devlin, PharmD, FCCP, FCCM, Associate Professor
Northeastern University School of Pharmacy
Adjunct Associate Professor
Tufts University School of Medicine
Boston, Massachusetts

- Pharmacy
- ICU
- Healthcare System
ICU sedation economics: It’s all about perspective

"Oh. Sorry for yelling. I thought you were much farther away."
Pharmacy Drug Budget

The Top “10” List

August 2011
Expenditure ($) by Medication

#1 Oncologic A
#2 Antithrombotic A
#3 Anti-infective A
#4 Erythropoetin

#32 Propofol
#223 Midazolam
ICU Sedation Drug Acquisition Costs Vary Widely Between Agents

Lorazepam 3mg/

hr:

$35

Midazolam 5mg/

Tufts Medical Center 2010 Pricing
Pharmacy Budget

October 2011
Expenditure ($) by Medication

#1 Oncologic A
#2 Antithrombotic A
#3 Anti-infective A
#4 Dexmedetomidine ??
#56 Propofol
#226 Midazolam
Influence of Sedation Practices on Health Care Costs

- ICU costs account for more than 1/3 of total inpatient costs
- Incremental cost of mechanical ventilation = $1522 per day

Medication is a relatively small part of ICU budget.
Use of Continuously Infused Sedatives in the ICU Remains High

Substantial Administrative Pressure to Decrease

↑ RN:Patient ratio
- Impact on level of patient wakefulness?
- Impact on RN compliance to a daily interruption protocol?
- Impact on compliance with delirium screening?

Barrier to hiring additional ICU-based staff
- Critical care pharmacist – development and support of sedation protocols
- PT/OT – early mobilization
- RT – compliance with SBT protocol

Medication is a relatively small part of ICU budget
ICU Budget

Duration of mechanical ventilation
Length of ICU stay
Line infections/VAP
Patient safety
Patient and family satisfaction
ICU Budget

- Duration of mechanical ventilation
- Length of ICU stay
- Line infections/VAP
- Patient safety
- Patient and family satisfaction

- Avoidance of coma
- Avoidance of delirium
- Post-hospital costs of care
- Patient functionality
- Patient long term outcome
ICU drug costs

ICU non-drug costs

↑ return to productivity for ICU survivors = ↑ tax revenue
ICU Sedation: It’s a Balancing

Patient Comfort and Ventilatory Optimization

Oversedation
Influence of Sedation Practices on Health Care Costs: Undersedation

- Tachycardia \(\rightarrow\) myocardial ischemia
- Use of neuromuscular blockers
 - Prolonged neuromuscular weakness common
 - Median $66,713 in additional costs (1995 costs)
- Short and long-term psychological effects
- Cost of device removal
 - 10 patients removed 42 devices (GI/vascular)
 - 74% were “significantly agitated” within 2 hr
 - Total $7606 or $181/event (1997 costs)
 - Annual cost at 42-bed ICU > $250,000

Sedation-induced Coma Is Associated with Higher Mortality

- N=274 patients evaluated throughout MICU admission
 - 32% unarousable
 - 21% no spontaneous motor activity
- Little variation over 24 hours in LOC, motor activity, or drug dose given
- RN perception of adequacy of sedation q4h:
 - Appropriately sedated 83%
 - Undersedated 14%
 - Oversedated 2.6%

Oversedation in ICU Remains Common

Costs of Oversedation in the ICU

↑ Duration of Mechanical Ventilation:

- Ventilator-associated pneumonia:
 - Mean ICU LOS of 6.1 additional days (95% CI, 5.32-6.87)
 - Additional cost of evaluating and treating a patient with VAP = $10,019
- Venous thrombosis:
 - Incremental cost per event = $3,000 (in 2000 $)

↑ Use of Head CT/Neurology Consult

↑ Potential for sedation-related adverse events and withdrawal

- Propofol-related infusion syndrome
- Lorazepam-related propylene glycol toxicity

↑ Potential for PTSD

ICU Delirium Associated with Higher Cost of Hospital Care

ICU Cost

Hospital Cost

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$9,014

$14,730

$41,836

$13,332

$22,346

$27,106

Never Delirium (n=41)

Ever Delirium (n=183)

All p≤0.002
Continuous Infusions of Benzodiazepines: Prolonged Duration of

- Infusions utilized:
 - 26% lorazepam alone
 - 42% lorazepam + fentanyl
 - 24% fentanyl alone
 - 2% propofol

Scheduled Intermittent Lorazepam vs. Propofol With Daily Interruption in MICU

<table>
<thead>
<tr>
<th></th>
<th>Lorazepam</th>
<th>Propofol</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 64</td>
<td>N = 68</td>
<td></td>
</tr>
<tr>
<td>Ventilator days (median)</td>
<td>8.4 (4.6 to 14.7)</td>
<td>5.8 (3.5 to 10.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>ICU LOS</td>
<td>10.4 (6.7 to 16.8)</td>
<td>8.3 (5.2 to 15.2)</td>
<td>0.20</td>
</tr>
<tr>
<td>APACHE II</td>
<td>22.9 ± 7.7</td>
<td>20.7 ± 7.3</td>
<td>0.05</td>
</tr>
<tr>
<td>Daily sedation dose</td>
<td>11.5 (3.8 to 22.7) mg</td>
<td>24.4 ± 16.3 mcg/kg/min</td>
<td>_</td>
</tr>
<tr>
<td>Morphine dose (mg/day)</td>
<td>10.7 (5.4 to 25.8)</td>
<td>31.6 (16.2 to 71.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Use of haloperidol</td>
<td>12%</td>
<td>9%</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Intermittent Lorazepam vs Propofol (DIS in both arms)

DIS = Daily Interruption of Sedation

Propofol Is More Cost–Effective Than Intermittent Lorazepam

- Use of propofol associated with lower total costs ($45,631 vs $52,009)
- Three more ventilator–free days with propofol
- Propofol was less costly or more effective in 94% of the 1000 simulations

Propofol Is More Cost-Effective Than Intermittent Lorazepam

- Use of propofol associated with lower total costs ($45,631 vs $52,009)
- Three more ventilator-free days with propofol
- Propofol was less costly or more effective in 94% of the 1000 simulations

MENDS: Dexmedetomidine vs Lorazepam

- Double-blind RCT of dexmedetomidine (0.15 – 1.5 mcg/kg/hr) vs lorazepam (1–10 mg/hr) infusion titrated to sedation goal (using RASS) established by ICU team
- No daily interruption
- Dexmedetomidine resulted in more time spent within sedation goals than lorazepam

\(P = 0.011 \)

\(P = 0.086 \)

\(P < 0.001 \)

MENDS Trial: Cost of Care

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Lorazepam (Median, IQR)</th>
<th>Dexmedetomidi (Median, IQR)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacy</td>
<td>20.6 (10,42)</td>
<td>27.4 (16,46)</td>
<td>0.15</td>
</tr>
<tr>
<td>Respirator</td>
<td>2.9 (2,6)</td>
<td>3.5 (2,7)</td>
<td>0.35</td>
</tr>
<tr>
<td>ICU cost</td>
<td>59.5 (36,92)</td>
<td>61.4 (37,108)</td>
<td>0.32</td>
</tr>
</tbody>
</table>

SEDCOM Trial

Time to Extubation

Time to ICU Discharge

A Cost Minimization Analysis of a Clinical Trial Dexmedetomidine vs. Midazolam

• Assumed equal sedation efficacy
 – Cost minimization analysis
• Compared costs of care between groups and selected the therapy generating the lowest cost
• Economic analysis performed post-hoc and from the institutional perspective
• Costs were estimated from multiple

SEDCOM Cost of Care

- Median drug costs
 - Dex $1166
 - Midazolam $60

- Total ICU patient savings with Dex: $9679
 - Reduced ICU stay
 - Reduced MV

† p ≤ 0.01, * 0.01 < p < 0.05
(based on median regression model for each cost component, comparing DEX to MID, controlling for patient race, hospital type, size, geographical location and teaching status)

p<0.05 when equivalent analysis was done on unadjusted cost.
SEDCOM Trial: Prevalence of Delirium

dexmedetomidine versus midazolam, $P < 0.001$

Remifentanil Analgo-Sedation vs. Conventional Sedation: UltiSAFE

Markov model: Probability to move between remifentanil to conventional sedation group up to a maximum of 28 days

Drug costs + ICU costs from a hospital perspective

Average 28 day total costs:

- Remifentanil: € 15,626
- Conventional sedation: € 17,100

95% CI € 2163 to 5110

Rozendaal FW et al. ICM 2009; 25:291

Paradigm Shift in the Outcomes Being Evaluated in Clinical Research

Outcomes During ICU Stay
- Time spent within sedation goal
- Episodes of agitation
- Episodes of agitated–related events
- Delirium
 - Prevalence of delirium
 - Days spent with delirium
- Duration of mechanical ventilation
- Duration of ICU stay
- ICU mortality

Outcomes After ICU Stay
- Disposition and functionality
- Cognition/Dementia
- Sleep quality
- ICU memories/PTSD
- Quality of life
- Depression
- Executive function

Girard TD et al. Crit Care Med 2010; 38:1513-1520
Skrobik Y. Lancet. 2010 Nov 27;376(9755):1805-7
The Cost Implications of Many Outcomes Related to the Administration of Sedation

Outcomes During ICU Stay
- Time spent within sedation goal
- Episodes of agitation
- Episodes of agitated-related events
- Delirium
 - Prevalence of delirium
 - Days spent with delirium
- Duration of mechanical ventilation

Outcomes After ICU Stay
- Disposition and functionality
- Cognition/Dementia
- Sleep quality
- ICU memories/PTSD
- Quality of life
- Depression
- Executive function

Girard TD et al. Crit Care Med 2010; 38:1513-1520
Skrobik Y. Lancet. 2010 Nov 27;376(9755):1805-7
Summary

• ICU sedative choice has an influence on ICU cost of care but this very much depends on the perspective of the analysis

• The influence of sedative choice on ICU and post–ICU costs related to coma, delirium and the other psychologic sequelae of critical illness remains unclear.

• Both propofol and dexmedetomidine are more cost–beneficial than benzodiazepines when ICU costs are considered.

• The cost–effectiveness of propofol vs. dexmedetomidine remains unclear.