Sedation and delirium- drugs and clinical management

Shannon S. Carson, MD
Associate Professor and Chief
Division of Pulmonary and Critical Care Medicine
University of North Carolina
Probability of transitioning from normal to delirium after lorazepam

Delirium Risk

<table>
<thead>
<tr>
<th>Lorazepam Dose</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Drug</td>
<td>0-1</td>
<td>1-2</td>
<td>2-3</td>
<td>3-4</td>
<td>4+</td>
<td></td>
</tr>
<tr>
<td>Log scale (mg)</td>
<td>0-2.7</td>
<td>2.7-7.4</td>
<td>7.4-20</td>
<td>20-55</td>
<td>55+</td>
<td></td>
</tr>
</tbody>
</table>

6 Month Mortality

Ely et al.

- Normal (n=17)
- Mild (n=68)
- Moderate (n=69)
- Severe (n=70)
Delirium and Chronic Cognitive Impairment

Mean Delirium Days (95% CI)

- Normal: 1.9
- Cognitively Impaired: 3.5

$P = 0.05$

Ely et al.

Neuropsychological Testing at 3 months
Richmond Agitation Sedation Scale (RASS)

4+ Combative
3+ Very Agitated
2+ Agitated
1+ Restless
0 Alert / Calm

-1 Drowsy eye contact > 10 sec
-2 Light Sedation eye contact < 10 sec
-3 Moderate no eye contact
-4 Deep physical stimulation required
-5 Unarousable no response even with physical stimulation

Verbal Physical

ABC Trial

Spontaneous Awakening Trial plus Spontaneous Breathing Trial

Vent Free Days: 15 vs 12
Hospital Days: 15 vs 19

Coma: 2 days vs 3

Self Extubation: 10% vs 4%
Re-intubation: 3% vs 2%

Tracheostomy: 13% vs 20%

Girard et al. Lancet 2008; 371;126
Sedation Practices

25 hospitals

251 patients

ANZICS Group AJRCCM 2012
Pain and Dyspnea Control First

- Morphine
 - Histamine release?

- Fentanyl
 - Tolerance
 - Infusion
No Sedative Agents

Mortality 36% no sedation, 47% sedation, p=0.27
Control group Ramsey score 3-4

Strom T. Lancet 2010
Sedative Agents

- Benzodiazepines
 - Midazolam
 - Lorazepam
 - Diazepam
- Propofol
- Dexmedetomidine
Midazolam

- **Rapid onset** and brief duration with initial dosing
- Rapid redistribution
- Defines the need for **daily interruption**
 - Accumulates in adipose tissue
 - Accumulates in hepatic and renal failure
- **High volume load**
Lorazepam

- Half-life: 12-15 hours
- Inactive metabolites
- Slower onset
- Intermittent bolus dosing preferred
 – (if used at all!)
Propofol

• Alkylphenol sedative and hypnotic
• Binds to a different γ-aminobutyric acid receptor than benzodiazepines
• General anesthetic at higher doses
• Rapid onset and offset
• Less reliable amnesia
 – Maybe a positive attribute?
Intermittent Lorazepam vs. Propofol

Randomized open label clinical trial
2 Medical ICUs
Subjects: 132 adult patients
• Expected to require MV for >48 hours
• Require > 10 mg or > 6 doses of lorazepam in 24 hours, or continuous sedation
Daily Awakening for both Groups
Morphine for both groups

Drug Administration

<table>
<thead>
<tr>
<th></th>
<th>Lorazepam n = 64</th>
<th>Propofol n = 68</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorazepam/ Vent day</td>
<td>11.1 mg median</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propofol/ Vent day</td>
<td></td>
<td>24 mcg/kg/min</td>
<td></td>
</tr>
<tr>
<td>Morphine/ Vent day</td>
<td>22.5 mg</td>
<td>55.5 mg</td>
<td>0.001</td>
</tr>
<tr>
<td>Morphine Infusions, n</td>
<td>22</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Lorazepam</th>
<th>Propofol</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vent days</td>
<td>8.4</td>
<td>5.6</td>
<td>0.03</td>
</tr>
<tr>
<td>Vent days, survivors</td>
<td>9.2</td>
<td>4.4</td>
<td>0.004</td>
</tr>
<tr>
<td>ICU LOS, survivors</td>
<td>12.6</td>
<td>7.8</td>
<td>0.03</td>
</tr>
<tr>
<td>SBTs performed</td>
<td>90%</td>
<td>89%</td>
<td>NS</td>
</tr>
<tr>
<td>SBT f/VT</td>
<td>65.8 ± 30.9</td>
<td>48.8 ± 26.7</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Cost effectiveness of Propofol

Versus Lorazepam

Versus Midazolam
Dexmedetomidine

• Alpha-2-adrenergic receptor agonist
• Analgesic effect in dorsal horn of spinal cord
• Sympatholysis via central & peripheral mechanisms
• Half-life: distribution phase: 9 min
• Half-life: elimination phase: 2 hr
Time spent at target

RASS > -3
74% Dex, 64% Mid/Pro

RASS < -3 (Deeper)
42% Dex, 62% Mid/Pro
Light to moderate sedation only, RASS 0 to -3

Jakob et al. JAMA 2012
Median ICU LOS 5.9 vs 7.6 days, p=0.24

Riker et al. JAMA 2009
Dex vs Midazolam - Delirium

Delirium free days 2.5 vs 1.7, p<0.002
MIND Study (Pilot)

Haloperidol vs Ziprasidone vs Placebo for Delirium Prevention/Treatment

120 Patients

Sedation protocol
Daily awakening
Daily SBTs

Girard et al. Crit Care Med 2010; 38:433
UNC Recommendation

• Sedation should be minimized and targeted to an objective endpoint using nurse protocol

• Continuous sedatives should be interrupted daily to allow awakening

• **Hypoxemic respiratory failure**: Begin with short acting, effective sedative
 – Propofol, supplemented by morphine
 – Consider dexmedetomidine during weaning

• **Ventilatory failure**: Low dose intermittent narcotics/midazolam or dexmedetomidine

• Assess for delirium
 – Consider haloperidol if agitated