MSC IN THE TREATMENT OF EXPERIMENTAL SEPSIS

Claudia C dos Santos, MSc MD FRCPC

Assistant Professor of Medicine, University of Toronto
Staff Intensivist, St. Michael’s Hospital, Critical Care
Scientist, Keenan and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto,
Clinician Scientist, Institute of Medical Sciences and Collaborative Program in Genome Biology
Disclosures......

I wished!!!
Improving clinical trials in the critically ill

Derek C. Angus, MD, MPH, FRCP; Jean-Paul Mira, MD, PhD; Jean-Louis Vincent, MD, PhD, FCCM

Google Scholar Search (www.scholar.google.com)

Over 104 Phase III RCTs

…..waiting for novel approaches

Table 1. Key areas for improvement in clinical trials

Better translation from bench to trial
- Improve in vivo models of critical illness
- Greater use of new mathematical tools to model complex disease processes
- Better-match patients to interventions using theragnostics

Better design and conduct
- Expand the arena for clinical trials outside of the intensive care unit
- Use outcome measures other than just short-term mortality
- Better use of pilot studies
- Increased co-enrollment of patients in multiple trials when feasible
- Use new study designs in addition to the established randomized control trial

Better infrastructure
- More national and international clinical trials groups and collaborations
- Improved industry–academia partnerships
- More transparent data collection and availability
Novel discoveries are ‘hampered’ by the intrinsic bias in the literature
- Importance of unbiased discovery
- Incorporating ‘heterogeneity’

Animal Models
- Mimic reality of critical care
- Not just ‘more’.....more ‘complex’

Mathematical modeling of complexity
- Perturbations of the system
- Capitalizing on the Pilots
Figure 3. MSC interactions with immune cells. MSCs are immunoprivileged cells that inhibit both innate (neutrophils, dendritic cells, natural killer cells) and adaptive (T cells and B cells) immune cells. Illustration credit: Cosmocyte/Ben Smith. INF-γ indicates interferon-γ; TNF, tumor necrosis factor. (Illustration credit: Cosmocyte/Ben Smith.)
Mesenchymal Stem Cells Reduce Inflammation while Enhancing Bacterial Clearance and Improving Survival in Sepsis

Shirley H. J. Mei¹,², Jack J. Haitsma², Claudia C. Dos Santos², Yupu Deng¹, Patrick F. H. Lai⁴, Arthur S. Slutsky²,⁴, W. Conrad Liles³,⁴,⁵, and Duncan J. Stewart¹,⁴

¹The Ottawa Hospital Research Institute, University of Ottawa, Ottawa; ²The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital and the Interdepartmental Division of Critical Care Medicine, University of Toronto; ³McLaughlin-Rotman Centre for Global Health, Toronto General Research Institute; ⁴Institute of Medical Science and ⁵Department of Medicine and McLaughlin Centre for Molecular Medicine, University of Toronto, Toronto, Ontario, Canada

Caecum Ligation and Puncture

Sham or CLP

Organ collection for microarray studies

Time 0

6 hrs

Fluid resuscitation and pain management

1. Saline
2. MSC (2 x 10⁵ cells)

28 hrs

Sacrifice
MSC DECREASES MORTALITY IN EXPERIMENTAL MODEL OF SEPSIS

![Survival Curve](Image)

- **CLP / Saline**
- **CLP / MSCs**

% Survival

Time (hours)

\[p < 0.05 \]
MSC ATTENUATE LEVELS OF SYSTEMIC PRO-INFLAMMATORY MEDIATORS

Mei et al. AJRCCM, 2010
MSCS RESULT IN INCREASED BACTERIAL CLEARANCE
ENHANCED PHAGOCYTIC ABILITY

Isolated CD11b positive cells

Peritoneal Cells

S. aureus

E. coli

Fluorescence Intensity

Time (min)

Clp / Saline
Clp / MSCs

Fluorescence Intensity

Time (min)

Clp / Saline
Clp / MSCs

Mei et al. AJRCCM, 2010
Antibacterial Effect of Human Mesenchymal Stem Cells Is Mediated in Part from Secretion of the Antimicrobial Peptide LL-37

Anna Krasnodebskaya, Yuanlin Song, Xiaohui Fang, Naveen Gupta, Vladimir Serikov, Jae-Woo Lee, Michael A. Matthay
Network Analysis of Transcriptional Responses Induced by Mesenchymal Stem Cell Treatment of Experimental Sepsis

The American Journal of Pathology, Vol. 181, No. 5, Month 2012
Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ajpath.2012.08.009

Lung Heart Liver Kidney Spleen

(5 x 4 x 3) + (4 x 3)

N = 72 samples

A

B

C

Tissues
Spleen Heart Lung Kidney Liver

Treatment
CLP MSC Sham
Network Analysis of Common Transcriptional Responses Induced by MSCs in Sepsis
Changes in Toll-Like Receptor signaling pathways after treatment with MSCs

i. Response to LPS

ii. Toll-like Receptor signaling (GSEA)

FDR q-value 0.016
MSC TREATMENT FOR LPS INDUCED LUNG INJURY

Mesenchymal Stem/Stromal Cells

[Images of cell cultures and flow cytometry graphs are shown]

Manuscript under revision
Intrapulmonary

Intravenous

Day 2

MMP-8
MMP-2
MMP-9
Gapdh

C ALI Day 1 ALI-SAL Day 2 ALI-CELL Day 2

Day 2

MMP-8
MMP-2
MMP-9
Gapdh

C ALI Day 1 ALI-SAL Day 2 ALI-CELL Day 2

Manuscript under revision
The chemokine system in diverse forms of macrophage activation and polarization

Alberto Mantovani1,2,*, Antonio Sica2, Silvano Sozzani2,3, Paola Allavena2, Annunciata Vecchi2 and Massimo Locati1

\textbf{M1}

- IFN-\gamma + LPS or TNF
- iNOS
- CD86
- MHC II
- RNI
- ROI
- IL-12 high
- IL-23
- IL-10 low

\textbf{M2}

- IL-4 and IL-13
- MHC II
- Arg
- Polyamine
- MR
- SRs
- IL-10 high
- IL-10 Decoy IL-1RI
- IL-1ra

\textbf{M1}

- Classical

\textbf{M2a}

- Alternative

\textbf{M2b}

- Type II

\textbf{M2c}

- Deactivated

\textbf{Th1 RESPONSES:}
- TYPE I INFLAMMATION
- DTH
- KILLING OF INTRACELLULAR PATHOGENS
- TUMOR RESISTANCE

\textbf{Th2 RESPONSES:}
- TYPE II INFLAMMATION
- ALLERGY
- KILLING AND ENCAPSULATION OF PARASITES

\textbf{Th1 ACTIVATION:}
- IMMUNOREGREULATION

\textbf{Th2 RESPONSES:}
- ALLERGY
- IMMUNOREGREULATION
- KILLING AND ENCAPSULATION OF PARASITES
- MATRIX DEPOSITION AND REMODELING
- TUMOR PROMOTION

\textbf{IMMUNOREGREULATION:}
- MATRIX DEPOSITION AND REMODELING
Mesenchymal Stromal Cells: New Directions

Armand Keating¹,*
¹Cell Therapy Program, Princess Margaret Hospital, Toronto, ON M5G 2M9, Canada
*Correspondence: armand.keating@uhn.on.ca
DOI 10.1016/j.stem.2012.05.015

proinflammatory

- TLR-4 + lipopolysaccharide

polarization

- MSC
- MSC 1
- MSC 2

inflammation, injury, allosresponse
- INFγ, TNFα, IL-1α, IL-1β

* levels / activity not affected by receptor activation

proinflammatory

- prevents suppression of T-cells

immunosuppressive

- increases MSC migration

M1

M2

MSC TREATMENT HAS DIFFERENT EFFECTS ON PRIMARY VERSUS SECONDARY ALI
ACKNOWLEDGEMENTS

Collaborators:
Dr. Pingzhao Hu
Dr. Jack Haitsma
Dr. Rolf Hubmayr
Dr. Stefan Uhlig
Dr. Yumiko Imai
Dr. Bing Han

Mentors:
Dr. Arthur S Slutsky
Dr. Mingyao Liu
Dr. Conrad Liles

Dr. Yuexin Shan
Hajera Amatullah
Dun Yuan Zhou
Ali Akram

Early Research Award
MINISTRY OF ECONOMIC DEVELOPMENT AND INNOVATION

Ontario

CICF
CANADIAN INTENSIVE CARE FOUNDATION

PARKER B. FRANCIS FELLOWSHIP PROGRAM

CIHR IRSC

Ontario Genomics Institute